Assignment I

Computational Algebra

- 1. Recall that the extended Euclid's algorithm on input polynomials $r_0 = f(x)$ and $r_1 = g(x)$ finds r_i, s_i, t_i for each iteration until the last iterations gives $r_l = \gcd(f, g)$ satisfying $r_l = s_l f + t_l g$. Prove the following for all values $0 \le i \le l$.
 - 1. $GCD(f,g) = GCD(r_i, r_{i+1}) = r_l$.
 - 2. $s_i f + t_i g = r_i$
 - 3. $s_i t_{i+1} t_i s_{i+1} = (-1)^i$
 - 4. $GCD(r_i, t_i) = GCD(f, t_i).$
 - 5. $f = (-1)^i (t_{i+1}r_i t_ir_{i+1}).$
 - 6. $g = (-1)^i (s_{i+1}r_i s_i r_{i+1})$
- 2. Compute s_i, t_i and r_i for each value of i for rational polynomials $f(x) = x^3 + 6x^2 + 11x + 6$ and $g(x) = x^2 1$. What is the value of l for this case?
- 3. Suppose a, n are positive integers, $1 \le a \le n$. Let $d = \gcd(a, n)$. Suppose b is a multiple of d. Show that:
 - The equation $ax = b \mod n$ is solvable.
 - If x is one solution, $x + \frac{n}{d}$ is also a solution.
 - The equation has exactly d solutions between 1 and n.
 - For what values of a between 1 and 20 does the equation $ax = 12 \mod 20$ fail to have a solution?
- 4. Let F be a finite field. Let p the least postive integer such that 1 + 1 + ...1 (p times) gives 0. Show that p is prime. p is called the **characteristic** of the field F.
- 5. A real number α is a repeated root of a real polynomial f(x) if $(x \alpha)^2$ divides f(x). Show that in $\mathbf{C}[\mathbf{x}]$, f has a repeated root if only if $GCD(f, f') \neq 1$ (where f' refers to the derivative of f).
- 6. Let a, b be (given) positive integers.
 - 1. For a given positive integer n, show that $a^n \mod n$ can be computed in $O(\log n)$ multiplications.
 - 2. Given only b, show that the problem of finding a and n such that $b = a^n$ for some positive integer n (if one such (a, n) pair exists) is computable with $O(\log^2 b)$ multiplications.
- 7. Let F be a field. Show that the ring F[x]/p(x) is a field if and only if p(x) is an irreducible polynomial.
- 8. An element $a \in \mathbb{Z}_n$ such that $a \notin \{\pm 1\} \mod n$ but $a^2 = 1$ is called a non-trivial square root of unity in \mathbb{Z}_n Let $n = p_1 p_2 p_3 \dots p_k$, where $p_1 \dots p_k$ are distinct odd prime numbers.
 - 1. Show that the equation $x^2 1 \mod n$ has 2^k distinct solutions in \mathbb{Z}_n . (Hint: Use Chinese remainder theorem)
 - 2. Suppose you know the value of one non-trivial square root of unity, show that you can find out a non-trivial divisor of n.
- 9. Suppose F be a field with m elements. Show that every element $\alpha \in F$ is a root of the polynomial $x^m x$. Use this fact to show that the product of all non-zero elements in F must be -1. (In particular, it follows that $1.2.3...(p-1) \equiv -1 \mod p$, a result known as Wilson's Theorem).
- 10. An ideal I in a ring R is maximal if there is no ideal in R that is a strict superset of I other than the whole R itself. Show that if I is a maximal ideal, then R/I is a field.