Assignment I

Computational Algebra

1. Recall that the extended Euclid's algorithm on input polynomials $r_{0}=f(x)$ and $r_{1}=g(x)$ finds r_{i}, s_{i}, t_{i} for each iteration until the last iterations gives $r_{l}=\operatorname{gcd}(f, g)$ satisfying $r_{l}=s_{l} f+t_{l} g$. Prove the following for all values $0 \leq i \leq l$.
2. $G C D(f, g)=G C D\left(r_{i}, r_{i+1}\right)=r_{l}$.
3. $s_{i} f+t_{i} g=r_{i}$
4. $s_{i} t_{i+1}-t_{i} s_{i+1}=(-1)^{i}$
5. $G C D\left(r_{i}, t_{i}\right)=G C D\left(f, t_{i}\right)$.
6. $f=(-1)^{i}\left(t_{i+1} r_{i}-t_{i} r_{i+1}\right)$.
7. $g=(-1)^{i}\left(s_{i+1} r_{i}-s_{i} r_{i+1}\right)$
8. Compute s_{i}, t_{i} and r_{i} for each value of i for rational polynomials $f(x)=x^{3}+6 x^{2}+11 x+6$ and $g(x)=x^{2}-1$. What is the value of l for this case?
9. Suppose a, n are positive integers, $1 \leq a \leq n$. Let $d=\operatorname{gcd}(a, n)$. Suppose b is a multiple of d. Show that:

- The equation $a x=b \bmod n$ is solvable.
- If x is one solution, $x+\frac{n}{d}$ is also a solution.
- The equation has exactly d solutions between 1 and n.
- For what values of a between 1 and 20 does the equation $a x=12 \bmod 20$ fail to have a solution?

4. Let F be a finite field. Let p the least postive integer such that $1+1+. .1$ (p times) gives 0 . Show that p is prime. p is called the characteristic of the field F.
5. A real number α is a repeated root of a real polynomial $f(x)$ if $(x-\alpha)^{2}$ divides $f(x)$. Show that in $\mathbf{C}[\mathbf{x}], f$ has a repeated root if only if $G C D\left(f, f^{\prime}\right) \neq 1$ (where f^{\prime} refers to the derivative of f).

6 . Let a, b be (given) positive integers.

1. For a given positive integer n, show that $a^{n} \bmod n$ can be computed in $O(\log n)$ multiplications.
2. Given only b, show that the problem of finding a and n such that $b=a^{n}$ for some positive integer n (if one such (a, n) pair exists) is computable with $O\left(\log ^{2} b\right)$ multiplications.
3. Let F be a field. Show that the ring $F[x] / p(x)$ is a field if and only if $p(x)$ is an irreducible polynomial.
4. An element $a \in \mathbf{Z}_{n}$ such that $a \notin\{ \pm 1\} \bmod n$ but $a^{2}=1$ is called a non-trivial square root of unity in \mathbf{Z}_{n} Let $n=p_{1} p_{2} p_{3} \ldots p_{k}$, where $p_{1} . ., p_{k}$ are distinct odd prime numbers.
5. Show that the equation $x^{2}-1 \bmod n$ has 2^{k} distinct solutions in \mathbf{Z}_{n}. (Hint: Use Chinese remainder theorem)
6. Suppose you know the value of one non-trivial square root of unity, show that you can find out a non-trivial divisor of n.
7. Suppose F be a field with m elements. Show that every element $\alpha \in F$ is a root of the polynomial $x^{m}-x$. Use this fact to show that the product of all non-zero elements in F must be -1 . (In particular, it follows that $1.2 .3 \ldots(p-1) \equiv-1 \bmod p$, a result known as Wilson's Theorem). .
8. An ideal I in a ring R is maximal if there is no ideal in R that is a strict superset of I other than the whole R itself. Show that if I is a maximal ideal, then R / I is a field.
