1. Let $p=43$. Let $a \neq \pm 1, a \in Z_{p}^{*}$ be a quadratic residue. Find a positive integer k such that a^{k} is a square root of $a \bmod p$. Justify your answer.
Soln: Let $k=\frac{p+1}{4}$. Then $\left(a^{k}\right)^{2}=a^{\frac{p+1}{2}}=a^{\frac{p-1}{2}} . a=1 . a=a \bmod p$. Thus $k=11$ solves.
2. Let p be a prime number of the form $4 k+3$. Is it always true that a is a quadratic residue if and only if $-a$ is a quadratic non-residue. (Hint: Carefully observe calculations of the previous question!).
Soln: if a is a quadratic non-residue then $a^{\frac{p-1}{2}}=-1$. Hence, $\left(a^{\frac{p+1}{4}}\right)^{2}=-a$. Thus $-a$ is a quadratic residue. Conversely, if a is a quadratic residue, then $(-a)^{\frac{p-1}{2}}=a^{\frac{p-1}{2}} \cdot(-1)^{\frac{p-1}{2}}=-1$ (why?). Hence $-a$ is a quadratic non-residue.
3. Find all values of $a \in Z_{17}^{*}$ such that $a^{\frac{n-1}{2}} \bmod 17 \neq\left(\frac{a}{17}\right)$

Soln: This question was set as an easy "take away".
4. Let $n=p^{k} m, k \geq 2$ with $G C D(m, p)=1, m>1$ odd. Let g be a generator of $Z_{p^{2}}^{*}$. Let $a \equiv g$ $\bmod p^{k}$ and $a \equiv 1 \bmod m$. Is it true that $a^{\frac{n-1}{2}} \bmod n \neq\left(\frac{a}{n}\right)$? Prove/disprove. Soln: $a=(g, 1) \in \mathbf{Z}_{p^{k}}^{*} \times \mathbf{Z}_{\mathbf{m}}{ }^{*}$. Now $a^{\frac{n-1}{2}}=\left(g^{\frac{n-1}{2}} \bmod p^{k}, 1\right) \in \mathbf{Z}_{p^{k}}^{*} \times \mathbf{Z}_{m}^{*}$. On the other hand $\left(\frac{a}{n}\right)$ can assume values only ± 1. Consequently, equality between the two is possible if and only if $g^{\frac{n-1}{2}} \bmod p^{k}=1$ (why?). But this would imply that $g^{\frac{n-1}{2}}=1 \bmod p^{2}$. But then $o(g)$ in $\mathbf{Z}_{p^{2}}^{*}$ must divide $\frac{n-1}{2}$ (Lagrange), This would imply that $p(p-1)$ must divide $\frac{n-1}{2}$ and thus p must divide $n-1$, a contradiction as p can't divide both n (as originally assumed) as well as $n-1$.
5. Let r be randomly chosen from Z_{n}^{*} for a given n satisfying conditions of the previous question. Suppose we announce n composite if and only if $r^{\frac{n-1}{2}} \bmod n \neq\left(\frac{r}{n}\right)$, can we say that the test announces n composite with probablity at least $\frac{1}{2}$? - prove/disprove.
Soln: Let $S_{n}=\left\{a \in \mathbf{Z}_{n}^{*}: a^{\frac{n-1}{2}} \bmod n \equiv\left(\frac{a}{n}\right) \bmod n\right\}$. It is easy to see that S_{n} is a subgroup of \mathbf{Z}_{n}^{*} and that $a \in \mathbf{Z}_{n}^{*}$ fails the test if and only if $a \in S_{n}$. Thus, if S_{n} is a proper subgroup of \mathbf{Z}_{n}^{*}, the test announces n composite with probability at least $\frac{1}{2}$ (why?- Largrange). In the previous question we have seen the existance of one element outside S_{n}. Hence, S_{n} is indeed a proper subgroup of \mathbf{Z}_{n}^{*}.
6. Let $n=p_{1} p_{2} . . p_{k}$ be a Carmichael number. Prove that there exists $a \in Z_{n}^{*}$ such that $a^{\frac{n-1}{2^{k}}} \neq-1$ for all $k \geq 1$ such that 2^{k} divides $(n-1)$.
Soln: This question is easier than it was designed to be. Simply setting $a=1$ solves! unfortunately(?) - I missed putting the condition $a \neq 1$ in the question. Even if the condition was there, you could have found such a as follows: pick a such that $a=-1 \bmod p_{1}$ and $a \equiv 1 \bmod p_{i}, 1<i \leq k$. No power of this element can be equal to -1 (why?).
7. What will Miller Rabin test return if a is the randomly chosen element for testing compositeness of n, a, n satisfying conditions stated in the previous question? Justify your answer.
Soln: Let $n-1=2^{k} m$, m odd. If $a^{m} \neq \pm 1$ Miller Rabin will return COMPOSITE; otherwise, Miller Rabin will return PRIME. The reasoning is left to you.
8. Let $\left(b_{1}, b_{2}\right)$ be a basis for a (two dimensional) lattice \mathcal{L} with $\left\|b_{1}\right\| \leq\left\|b_{2}\right\| \leq\left\|b_{2}+q b_{1}\right\|$ for all $q \in \mathbf{Z}$. Prove that $\|v\| \geq\left\|b_{2}\right\|$ for all $v \in \mathcal{L}, v \notin \operatorname{Span}\left(b_{1}\right)$. (Answer on the reverse side).
9. Let $\left(b_{1}, b_{2}\right)$ be a basis for a (two dimensional) lattice \mathcal{L} with $\left\|b_{1}\right\|=\left\|b_{2}\right\|$. Can we conclude that $\left(b_{1}, b_{2}\right)$ is a reduced basis for \mathcal{L} ? Prove / Provide counter example.
Soln: Consider $b_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $b_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. It is easy to see that $b_{1}-b_{2}$, is a vector in the lattice shorter than both.
10. A prime number of the form $p=2^{k}+1$ for some positive integer k is called a Fermat Prime. (Ex: $3,5,17$). Show that if $2^{k}+1$ is prime, then k must be a power of 2 . (That is $p=2^{2^{r}}+1$ for some $r \geq 0$.). Hint: When m is odd, $(a+b)$ is a divisor of $\left(a^{m}+b^{m}\right)$.
Soln: Consider a Fermat prime p of the form $2^{2^{t} m}+1$ with m odd. Put $x=2^{2^{t}}$. Then $p=x^{m}+1$. Hence $(x+1)$ must be a divisor of p. As p is prime, m must be 1 .
11. Consider the following four step algorithm that is claimed to test whether a given n is a Fermat prime:

1. if $(n-1)$ is not a power of 2 , return NO. 2. Randomly chose $a \in\{1,2, . .(n-1)\}$. 3 . if $a^{\frac{n-1}{2}}=1$ return NO. 4. Return YES.
2. Derive an upper bound on the probability that the algorithm announces NO if n is actually a Fermat prime?
3. What is the (worst case) probability that the algorithm announces YES when n is not prime?

Soln:

1. Let p be a Fermat prime. Let $p-1=2^{t}$. Since Z_{p}^{*} is cyclic of order $\phi(p-1)=2^{t-1}=\frac{\phi(p)}{2}$, with probability $\frac{1}{2}$, a random element $a \in Z_{p}^{*}$ is a generator of Z_{p}^{*}, and for such a, the algorithm will not return NO in Step 2 (and hence return YES). (why?).
2. If the random element is 1 or -1 , clearly the test will return NO except in trivial cases (why?). Consider the case $n=9=2^{3}+1$. In this case, every element in Z_{9}^{*} except 1 and -1 will result in the algorithm returning YES. Hence, the probability can be as bad as $\left(1-\frac{2}{\phi(n)}\right)$.
