1. Let a and b be generators of cyclic groups G_{1} and G_{2} respectively with p and q elements for some distinct odd primes p and q. Find all values of i, j for which $\left(a^{i}, b^{j}\right)$ is not a generator of $G_{1} \times G_{2}$, $1 \leq i \leq p, 1 \leq j \leq q$.
Soln: except when $i=p$ or $j=p$ or both. (total $p+q-1$ possibilities).
2. Let F be a field and $\alpha \in F$ be an element. Let $m(x) \in F[x]$ be a polynomial of minimum degree that has α as a root. Show that $m(x)$ is irreducible. Is the claim true if F is an integral domain?
Soln: $(x-\alpha)$ is the minimum polynomial that has α as a root. Clearly, this is irreducible, irrespective of whether F is a field or an integral domain.
3. Let p, q be primes such that $p<q$. Suppose that $Z_{p q}^{*}$ is cyclic. What are the possible values for p ? Justify your answer.
Soln: $Z_{p q}^{*} \equiv Z_{p}^{*} \times Z_{q}^{*}$ by Chinese remainder theorem. The RHS is a product of two cyclic groups of order $p-1$ and $q-1$. Such a product is cyclic if and only if $G C D(p-1, q-1)=1$. Since $p<q$ and p, q primes, this can happen if and only if $p=2$.
4. Let $a(x)$ be a polynomal of degree at most $n-1$ whose n-point FFT is $(0,1,0,1, \ldots, 0,1)$. Let $b(x)$ be a polynomal of degree at most $n-1$ whose n-point FFT is $(1,0,1,0, \ldots, 1,0)$. Find $a(x) b(x)$ $\bmod \left(x^{n}-1\right)$. Justify your answer.
Soln: Let ω be a primitive $n^{\text {th }}$ root of unity. Then $F F T\left(a(x) b(x) \bmod \left(x^{n}-1\right)\right)$ $=\left(a(1) b(1), a(\omega) b(\omega), a\left(\omega^{2}\right) b\left(\omega^{2}\right), . ., a\left(\omega^{n-1}\right) b\left(\omega^{n-1}\right)\right)=(0,0, \ldots 0)$. It follows that $a(x) b(x) \equiv 0 \bmod \left(x^{n}-1\right)$.
5. Let p be an odd prime. How many elements in Z_{p}^{*} has a square root? (That is, for how many values of a between 1 and $p-1$ does the equation $x^{2}=a \bmod p$ has a solution?)
Soln: Let g be a generator of Z_{p}^{*}. All even powers of g must have exactly two square roots (why?). This gives us $\frac{p-1}{2}$ distinct elements in Z_{p}^{*} having square roots (how?) If a has a square root, then a must be a root of the polynomal $x^{\frac{p-1}{2}}-1$ in Z_{p}^{*} (why?). Hence there can't be more than $\frac{p-1}{2}$ elements with square roots in Z_{p}^{*} (why?)
6. Given $n=561=3 \times 11 \times 17$. Is it true that for each $a \in Z_{561}^{*}, a^{n-1}=1 \bmod n$? Justify. (Of course, not to be solved via brute force..).
Soln: By Chinese remainder theorem, $Z_{561}^{*} \equiv Z_{3}^{*} \times Z_{11}^{*} \times Z_{17}^{*}$. Let $a \in Z_{561}^{*}$. Let $a=\left(a_{1}, a_{2}, a_{3}\right)$ on the RS of the Chinese remainder theorem. Applying Fermat's thereom, we have $a_{1}^{2}=1 \bmod 3$, $a_{2}^{10}=1 \bmod 11, a_{3}^{16}=1 \bmod 17$. Hence $a_{1}^{560}=1 \bmod 3, a_{2}^{560}=1 \bmod 11, a_{3}^{560}=1$ $\bmod 17$ because 2,10 and 16 divides 560 .
7. A maximal ideal in a ring R is an ideal I such that 1) I is a strict subset of R and 2) any ideal of R
properly containing I must be the whole R itself. Suppose I is a maximal ideal in a field F. What can you conclude about I ?
Soln: If I contains any non zero element a, then since $a a^{-1} \in I$ and thus we have $1 \in I$. But then, for each $r \in R$, 1. $r=r \in I$. Hence $I=R$. Hence, if $I \neq R$ then $I=\{0\}$.
8. Consider the linear transformation T from \mathbf{R}^{n} to itself that transforms a vector $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ to the vector $\left(a_{1}, 2 a_{2}, 3 a_{3}, . .,(n-1) a_{n-1}, 0\right)$. Find all solutions to $T(x)=(1,0,0, \ldots 0)$.
Soln: Note that T is the derivative operator. It is easy to see that $\operatorname{ker}(T)=\{(c, 0,0, \ldots 0): c \in \mathbf{R}\}$. A particular solution to $T(x)=(1,0,0, \ldots, 0)$ is $x_{0}=(0,1,0,0, \ldots 0)$. Thus the general solution is $x_{0}+\operatorname{ker}(T)=(c, 1,0, \ldots 0)$.
