
CS2005 Test I, Part I: Data Structures and Algorithms, Jan. 2017

Name: Batch: Roll No:

1. 2Can a function f(n) be θ(n) and θ(n2) at the same time? Justify.

Solution: f(n) = θ(n) ⇒ we can find c1, c2, n
′ such that c1n ≤ f(n) ≤ c2n,∀n ≥ n′.

f(n) = θ(n2) ⇒ we can find c3, c4, n
′′ such that c3n

2 ≤ f(n) ≤ c4n
2,∀n ≥ n′′. From the

two inequalities, we get

c3n
2 ≤ f(n) ≤ c2n,∀n ≥ n0(= max(n′, n′′))⇒ n ≤ c2/c3,∀n ≥ n0

which is never true. Hence we have a contradiction and hence f(n) cannot be θ(n) and θ(n2) at
the same time

2. A double ended Queue (dequeue) supports insertion and deletion at the front and back. The dequeue
support six fundamental functionalities.

• InsertF irst(Q, e) inserts element e at the beginning of the dequeue Q.

• InsertLast(Q, e) inserts element e at the end of the dequeue Q.

• RemoveF irst(Q) removes the first element of the dequeue Q.

• RemoveLast(Q) removes the last element of the dequeue Q.

• First(Q) and Last(Q) returns the first and last element (without any deletions) of the queue,
respectively.

A doubly linked list implementation (with a node defined as struct node{element, left, right},
where left and right are pointers to type node) can implement a dequeue with all operations taking
O(1) time.

(a) 5Show the implementation of InsertF irst(Q, e),RemoveLast(Q) andLast(Q) using a doubly

linked list takingO(1) time, using the notation thatQ.head points to the front node of the dequeue
and Q.tail points to the last node of the dequeue. [Pay special attention towards cases when the
dequeue is empty (null) and when dequeue has just one element.]

Solution:
function InsertFirst(Q, e) . e is not a node, but an element
nodeptr ← create new node
nodeptr → element← e
nodeptr → left← NULL
nodeptr → right← NULL
if Q.head = NULL then
Q.head← nodeptr
Q.tail← nodeptr . This is important

else
nodeptr → right← Q.head
Q.head→ left← nodeptr . Important that you point the

. previous first to the current first.
Q.head← nodeptr

Solution:
function RemoveLast(Q) . You don’t specify the input

if Q.tail = NULL then
return Underflow Error



if Q.tail = Q.head then . Important to reinitialize both of them to NULL
tempnode← Q.tail . tempnode is a pointer to the node to which

. Q.tail was pointing to.
Q.tail← NULL
Q.head← NULL . Important
free tempnode . Important to free the memory corresponding

. to the node which was deleted
else
tempnode← Q.tail
Q.tail← Q.tail→ left
free tempnode . Important
Q.tail→ right← NULL . Important that the new tail is pointing

. to NULL and not pointing to the deleted node.

Solution:
function Last(Q)

if Q.tail = NULL then
return Underflow Error

else
return Q.tail→ element

(b) 4Adapter Patterns are implementations of a given Abstract Data Type (ADT) using the function-

alities of another ADT. The functionalities of a stack are isEmpty(), Top(), Push(e), Pop()
(where Top() returns the top of the stack without deletion and other functionalities are as defined
in the lectures). Implement this stack using a dequeue defined above, with each operation taking
O(1) time. [Assume that you already have an isEmpty() function corresponding to the dequeue,
which you can use during the implementation of the stack.]

Solution:
function isEmpty( )

return isEmpty(Q)

function Top( )
return Last(Q) . If the Q is empty, then underflow error

. would be returned by Last(Q)
function Push(e)
InsertLast(Q, e)

function Pop( ) . Remember that Pop has to delete and return the top element
if isEmpty( ) then

return Underflow error
temp = Top( )
RemoveLast(Q)
return temp

3. Different Implementations, different efficiencies, different needs.

We have seen the implementation of a priority queue using heaps. We have seen the running time of a
priority Q operations using a heap are Insert: O(lg n), Find-Max (without deletion): O(1) and Extract-
Max (with deletion): O(lg n). Now consider the implementation of a priority Q using a (reverse) sorted
(linked) list.

Page 2 of 3



(a) 3Argue the runtime complexities of the best implementation of Insert, Find-Max and Extract-Max
using the sorted list, without putting out any actual pseudo-code.

Solution:

• Insert takes O(n) as we have to traverse the sorted list, until we find an element which
is less than the inserted element.

• Find-Max would take O(1) time, as the maximum value will always be in the head of
the list, which is independent of the length of the list.

• Extract-Max would take O(1) time, as we are always deleting from the head of the list,
which is independent of the length of the list.

(b) 1Assuming your application has more calls to Find-Max and less number of Insert calls, which of the
two implementations of the Priority Q would you prefer and why?

Solution: Since both the approaches have the same runtime complexity for Find-max, the
decision would be based on the complexity of inserts. Since Insertion complexity is higher
for the sorted list, we would go for the Heap. (However, if we had more Extract-Max than
Find-Max, then we would choose the sorted list.)

Page 3


