1. Prove that $(\log n)^{2}=o(n)$.

Soln: By L'Hospital's rule, $\lim _{n \rightarrow \infty} \frac{\log n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{2 n}=0$.
2. Suppose you are merging an m element array with an n element array. What is the minimum number of comparisons required (in the best case)? Justify your answer.
Soln: When all elements of the smaller array is smaller than all elements of the larger array, min (m, n) comparisions suffice.
3. In the version of quick sort eliminating tail recursion, Assume that we always invoke recursively the partition of smaller size and do the larger part iteratively. Let c be constant indicating the amount of stack memory required for each recursive all. Let $S(n)$ denote the worst case stack memory required for sorting an array of n elements. Write down a recurrence for estimating $S(n)$. Justify your answer and solve the recurrence.
Soln: If $T(n)$ is the stack size for an array of size n and if each call takes c space, then since each recursive call reduces the value of n by at least to half, we have $T(n)=T\left(\frac{n}{2}\right)+c=\theta(\log n)$.
4. Let t be a pointer to the root of a linked list defined over the following node structure:

```
typedef struct node{
    int data;
    struct node *next;
};
```

Eliminate recursion using a single while loop. (Assume functions push(struct node ${ }^{*}$ t), struct node* $\operatorname{pop}()$ and int stackempty () in the standard manner) [Answer on the reverse side]

```
void test(struct node * t) {
    if (t==NULL) return;
    else {
            test(t->next);
            print(t->data);
    }
    return;
}
```

Soln: This question is deliberately left unsolved.
5. Let A be an n element array. We want A to store a randomly generated permutation of the set $\{1,2, . ., n\}$. Assume that we have a function $\operatorname{Pick}()$ that picks an element from the set $\{1,2, . ., n\}$ uniformly at random. Consider the following algorithm: [Answer on the reverse side]

```
A[1] = Pick()
for i = 2 to n do
    L : x = Pick()
        if x is equal to one among A[1], A[2],.., A[i-1], goto L
        A[i] = x;
endfor
```

Compute the expected number of times the function $\operatorname{Pick}()$ will be invoked before the algorithm completes execution.
Soln: For each i iteration, probability that each call to pick picks an element different from the ones chosen previously is $\frac{n-i+1}{n}$. The expected number of calls to $\operatorname{Pick}()$ for each i is given by the mean of the geometric distribution, $\frac{n}{n-i+1}$. Summing over all values of i and adding the first call to Pick() outside the loop, the total cost if $1+\sum_{i=2}^{n} \frac{n}{n-i+1}=n H_{n}=\theta(n \log n)$.

