1. We have hash table of size 7 to store integers with linear probing and a hash function $h(x)=x \% 7$.

Fill the contents of the hash table below after inserting the keys $0,11,3,7,1,9$ in the order.

Solution:

Index	0	1	2	3	4	5	6
Key	0	7	1	3	11	9	

2. A Binary Search Tree contains the following values: $1,2,3,4,5,6,7,8$. The tree is traversed PREORDER and the values are printed out. Which of the following three sequences is a valid output. Draw the Binary Search Tree corresponding to the correct output
(A) 53126485
(B) 53124786
(C) 53124786

3. Below each of the Red Black Trees, specify 'YES' if it satisfies the properties of a Red-Black-Tree or 'NO' if it violates the properties. Also state the property which is violated if the answer is 'NO'. [The black colored node is black, and the other red.]

Solution:

A. NO: Red node should have children colored black. Node 8 which is red has a red child.
B. YES.
C. NO: BST property. The value of the right subtree should not be less than that of the parent.
D. YES.
4. Consider the nodes of a binary search tree defined over the following node structure:

```
typedef struct node {
    int data;
    struct node *parent;
    struct node *left;
    struct node *right;
};
```

Complete the definition of the following method so it returns the sum of the values contained in all of the nodes of the binary tree with root T.

Solution:

```
int sum(struct node *T){
    if (T == NULL)
        return 0;
    return (T->data + sum(T->left) + sum(T->right));
}
```

5. In a hash table with m slots using the chaining method, what is the expected number of items (keys) we need to map to the m slots until they store at least one item each. [Answer on the reverse side] [Hint: The crucial idea here is to define X_{j} equal to the number of items(keys) it takes to go from $(j-1)$ to j filled slots.]

Solution: Let X_{j} denote the number of items it takes to go from $(j-1)$ to j filled slots. X_{j} is a geometric random variable
If $\frac{j-1}{m}$ slots are filled, $\frac{m-j+1}{m}$ slots are empty. The probability of success for X_{j} is hence $\frac{m-j+1}{m}$. Hence $E\left[X_{j}\right]=\frac{m}{m-j+1}$.
Let X denote the number of items (keys) we need to map to the m slots until they store at least one item each. Hence $X=\sum_{i=1}^{m} X_{i}$. Our goal is to find $E[X]$.

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{m} E\left[X_{i}\right] \\
& =\frac{m}{m}+\frac{m}{m-1}+\cdots+\frac{m}{1} \\
& =m\left(1+\frac{1}{2}+\cdots+\frac{1}{m}\right) \\
& =m H_{m} \\
& \leq m(1+\log m) \\
& =O(m \log m)
\end{aligned}
$$

