Name:

Batch: Roll No:

CS2005:Data Structures and Algorithms, Test II, Part I, Jan. 2017

1. We have hash table of size 7 to store integers with linear probing and a hash function h(x) = x%7. Fill the contents of the hash table below after inserting the keys 0, 11, 3, 7, 1, 9 in the order.

Solution:										
	Index	0	1	2	3	4	5	6		
	Key	0	7	1	3	11	9			

2. A Binary Search Tree contains the following values: 1, 2, 3, 4, 5, 6, 7, 8. The tree is traversed PRE-ORDER and the values are printed out. Which of the following three sequences is a valid output. Draw the Binary Search Tree corresponding to the correct output

(A) 5 3 1 2 6 4 8 5
(B) 5 3 1 2 4 7 8 6
(C) 5 3 1 2 4 7 8 6

3. Below each of the Red Black Trees, specify 'YES' if it satisfies the properties of a Red-Black-Tree or 'NO' if it violates the properties. Also state the property which is violated if the answer is 'NO'. [The black colored node is black, and the other red.]

Solution:A. NO: Red node should have children colored black. Node 8 which is red has a red child.B. YES.C. NO: BST property. The value of the right subtree should not be less than that of the parent.D. YES.

4. Consider the nodes of a binary search tree defined over the following node structure:

```
typedef struct node {
    int data;
    struct node *parent;
    struct node *left;
    struct node *right;
};
```

Complete the definition of the following method so it returns the sum of the values contained in all of the nodes of the binary tree with root T.

Max Marks:15

2

3

3

3

Solution: int sum(struct node *T){ if (T == NULL) return 0; return (T->data + sum(T->left) + sum(T->right)); }

5. In a hash table with m slots using the chaining method, what is the expected number of items (keys) we need to map to the m slots until they store at least one item each. [Answer on the reverse side] [Hint: The crucial idea here is to define X_j equal to the number of items(keys) it takes to go from (j-1) to j filled slots.]

Solution: Let X_j denote the number of items it takes to go from (j-1) to j filled slots. X_j is a geometric random variable If $\frac{j-1}{m}$ slots are filled, $\frac{m-j+1}{m}$ slots are empty. The probability of success for X_j is hence $\frac{m-j+1}{m}$. Hence $E[X_j] = \frac{m}{m-j+1}$.

Let X denote the number of items (keys) we need to map to the m slots until they store at least one item each. Hence $X = \sum_{i=1}^{m} X_i$. Our goal is to find E[X].

$$E[X] = \sum_{i=1}^{m} E[X_i]$$

= $\frac{m}{m} + \frac{m}{m-1} + \dots + \frac{m}{1}$
= $m\left(1 + \frac{1}{2} + \dots + \frac{1}{m}\right)$
= mH_m
 $\leq m(1 + \log m)$
= $O(m\log m)$

4