1 An equivalence relation on strings

1.1 Preliminaries

Equivalence Relations

Definition 1. A binary relation R C A x A is an equivalence relation iff
Reflexivity For every a € A, (a,a) € R,

Symmetry For every a,b € A, if (a,b) € R then (b,a) € R, and
Transitivity For every a,b,c € A, if (a,b) € R and (b,c) € R then (a,c) € R.
For an equivalence relation =, we will often write a = b instead of (a,b) €=.

Definition 2. For an equivalence relation =C A x A, the equivalence class of a € A (denoted [a]=)
is given by
We={beAlb=a}

The index of =, denoted as #(=), is the number of equivalence classes of =. We will say that =
has finite index if #(=) is a finite number.

Ezample 3. Consider the relation =3C N x N such that (i, j) €=3 iff i mod 3 = j mod 3. It is easy
to see that =3 is reflexive, symmetric, and transitive (and hence an equivalence relation).
The equivalence class of 5 is given by

[5]=, = {i € N|imod 3 =2 =5mod 3}
The relation =3 has 3 equivalence classes given by

AOZ{Z€N|ZmOd3:0}
A; ={ieNJ|imod3 =1}
Ay ={i € N|imod 3 =2}

Thus, #(:3) = 3.

Let us consider another equivalence relation =C N x N such that (i,j) €= iff i = j. Now the
equivalence class for any number i is [i]= = {i}. The collection of all equivalence classes of = is
{{i} | i € N}. Thus #(=) is infinite.

1.2 An Equivalence Relation on Strings

A Language theoretic equivalence

Definition 4. For any L C ¥*, define =;C ¥* x X* such that

r=pyiffvVzeX*. zze L yze L



Proposition 5. For any language L, =1, is an equivalence relation.

Proof left as exercise.
Examples

Ezample 6. Let L = {w | w has an odd number of Os and 1s }. Observe that 110 =7, 000 because
for any z € {0,1}*

110z € L iff z has an odd number of 1s and an even number of Os iff 000z € L
In fact, [110]=, = {w | w has an even number of 1s and an odd number of 0s}. Consider

Aee = {w | w has an even number of Os and 1s}
Ase = {w | w has an even number of 0s and an odd number of 1s}
Aeo = {w | w has an odd number of 0s and an even number of 1s}
Apo = {w | w has an odd number of Os and 1s}

Now for any z,y € Aee, we can show that x =, y. Let z be any string. zz € L iff z has an odd
number of Os and 1s iff yz € L. Similarly one can show that any pair of strings in A, (or A, or
Apo) are equivalent w.r.t. =p.
On the other hand, if x and y belong to different sets above then x #; y. For example, let
x € Aee and y € Ape. Then 210 € L (because £10 has an odd number of 0s and 1s). But y10 ¢ L
because y10 has an even number of Os and an odd number of 1s. The other cases are similar.
Thus, the collection of equivalence classes of =, is { Aee, Aoe, Aecos Ao }- Therefore #(=r) = 4.

Ezxample 7. Let P = {w|w contains 001 as a substring }. Observe that = 10 #p y = 100 because
taking z = 1, we have xz = 101 ¢ P but yz = 1001 € P. On the other hand, 1001 =p 001 because
for every z, we have 1001z € L and 001z € L. The equivalence classes of =p are

Apor = {w | w has 001 as a substring}

Ap = {w | w does not have 001 as substring and ends in 0 and the second last symbol is not 0}
Apo = {w | w does not have 001 as substring and ends in 00}

A1 = {w | w does not have 001 as substring and ends in 1 or is €}

One can show that for any two strings z,y that belong to the same set (in the above listing),
xr =p y, and x,y belong to different sets then x Zp y. We show these for one particular case;
the rest can be similarly established. Consider x,y € Ag. Now xzz € P iff either z has 001 as a
substring or z begins with 01 iff yz € L. On the other hand, suppose x € Ay and y € Apg. Take
z=1. Now yz = yl € P because the last 3 symbols of yz is 001. On the other hand zz =z1 ¢ L
because z1 does not have 001 as a substring.

Since the collection of all equivalence classes of =p is {Ago1, Ao, Aoo, A1}, #(=p) = 4.
Ezample 8. Consider Lon1, = {0"1" | n > 0}. Consider x = 0° and y = 0/ with i # j. = Z1,,,, ¥
because 0'1° € Loy1, but 091 & Lo,1,. In fact, for any i, [Oi};Lonln = {0}. If we consider strings
of the form 0?17 where 1 < j < i, we have [Oilj]ELOnm = {0¥1¢|k— ¢ =i —j} because 0'17z € Lon1n
iff z = 197" iff 0¥1¢ € Lop1, when k — ¢ = i — j. Finally, when we consider any two strings = and
y such that x and y are not of the form 0°17, where j < i, we have zz and yz are never in the set
Lonin, and so (vaccuously) x =g, V-

Based on the above analysis, #(=L,,,,,) is infinite.



Properties of =;,

Proposition 9. For any language L, if x = y then for any w, zw =, yw.

Proof. Assume for contradiction that z = y but for some w, zw #Zr yw. Since xw # yw, there
is a z such that either (zwz € L and ywz ¢ L) or (zwz ¢ L and ywz € L). In either case, we
can conclude that = # y because taking z’ = wz, we have 2z’ € L and x2’ ¢ L (or x2’ ¢ L and
yz' € L). This contradicts the assumption that x =, y. ]

2 Myhill-Nerode Theorem

Regular languages have finite index

Proposition 10. Let L be recognized by DFA M with initial state qo. If 5M(q0, x) = SM(qo, y) then
T=LYy.

Proof. This proof is essentially the basis of all our DFA lower bound proofs. We repeat the crux
of the argument again here.

Suppose z,y are such that SM(qo, x) = SM(qo, y). It follows that for any z € ¥*, SM(qo,xz) =
SM(qo,yz). Hence, zz is accepted by M iff yz if accepted by M. In other words, zz € L(M) = L
iff yz€ L(M) = L. Thus, z =1 y. O

Corollary 11. Let L be a regular language and let k = #(=p). If M is a DFA that recognizes L
and suppose M has n states, then n > k.

Proof. This our lower bound proof technique. It is the contrapositive of the previous proposition
because it says that if x Zp y then dps(qo, ) # dnr(qo, y)- O

Corollary 12. If L is reqular then =y, has finite index.

Proof. 1f L is regular then there is a DFA M recognizing L. Suppose M has n states. Then by
proposition, we have #(=r) < n, and thus, =7, has finitely many equivalence classes. O

Finite Index implies Regularity

Proposition 13. Let L C X* be such that #(=r) is finite. Then L is regular.

Proof. Our proof will construct a DFA that recognizes L. Since =y, has finite index, let F, Fo, ... Ej
be the set of all the equivalence classes of =;,. The states of the DFA M’ recognizing L will be the
equivalence classes of =7, The formal construction is as follows. The DFA M* = (Q", ¥, §, qé ,FL)
where

° QL ={FE1,...Ex},



* q(j): = MEL

e F'X = {[z]=, |z € L}; observe that FX is well-defined because if + € L and x =, y then
ze€eL = ye=ye€ L.

e And 6" is given by
5L([x]5ua) = [xa’]EL

Notice that 67 is well defined because if 2 =7, y then za =1, ya.

Correctnes of the above construction requires us to prove that L(M%) = L, i.e., Vw. w € L(M¥)
iff w e L. As for all DFA correctness proofs, this one will also be proved by induction on |w| by
strengthening this statement. We will show

Yw. SML (qg,w) = {[w]EL}

First observe that if the stronger statement is established then correctness follows because w is
accepted by ME iff 0, (¢F, w) (= {[w]=, }) N FE # 0 iff [w]=, € FL iff w € L (by definition of FL).
To complete the proof we will show

Vw. Sype (g, w) = {[w]=,}
by induction on |w|.
e Base Case When |w| = 0, w = e. We know that 0,z (go,€) = {qo} = {[e]=, } since g0 = [¢]=,
o Ind. Hyp. Assume that 6,z (qo,w) = {[w]=, } for all w s.t. [w| < n.

e Ind. Step Consider w = ua such that ¢ € ¥ and v € X" 1.

5ML(q0, w=ua) = 6L(q,a)} where 5ML(q(), u) = {q}
0“([u]=,,a)} because by ind. hyp. ¢ = [u]=,

[ua = w]=, }because of the defn. of §*

O]

Corollary 14. If L is such that #(=r) = k then the DFA with the fewest states that recognizes L
has k states.

Proof. We previously showed that # (=) is lower bound on the number of statates that any DFA
recognizing L must have. The above construction of the DFA in fact shows that there is a DFA
recognizing L that has exactly k states. Thus, it must be the DFA with fewest states. O

Example



Ezample 15. Consider L = {w | w has an odd number of 0s and 1s }. We previously observed that
the equivalence classes of =, are

Ace = {w | w has an even number of 0s and 1s}
Ape = {w | w has an even number of 0s and an odd number of 1s}
Aco = {w | w has an odd number of 0s and an even number of 1s}
Apo = {w | w has an odd number of Os and 1s}

Now for w € Age, w0 € Aye and wl € Ago. Thus in DFA MF the transtion from A, on 0 will go to
Aoe and on 1 will go to Ae,. Similarly we can figure out the other transtions. The resulting DFA
looks like

Ezample 16. For the language P = {w | w contains 001 as a substring }, we saw that the set of
equivalence classes are

Apor = {w | w has 001 as a substring}

Ap = {w | w does not have 001 as substring and ends in 0 and the second last symbol is not 0}
Apo = {w | w does not have 001 as substring and ends in 00}

A1 = {w | w does not have 001 as substring and ends in 1 or is €}

Once again we can figure out transitions easily. For example, for w € Agg1, w0 and w1l are Ago1.
The resulting DFA is

Myhill-Nerode Theorem

Theorem 17. L is reqular iff =1 has finitely many equivalence classes.

Proof. Follows from all the observation made so far. O
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