
1 An equivalence relation on strings

1.1 Preliminaries

Equivalence Relations

Definition 1. A binary relation R ⊆ A×A is an equivalence relation iff

Reflexivity For every a ∈ A, (a, a) ∈ R,

Symmetry For every a, b ∈ A, if (a, b) ∈ R then (b, a) ∈ R, and

Transitivity For every a, b, c ∈ A, if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

For an equivalence relation ≡, we will often write a ≡ b instead of (a, b) ∈≡.

Definition 2. For an equivalence relation ≡⊆ A×A, the equivalence class of a ∈ A (denoted [a]≡)
is given by

[a]≡ = {b ∈ A | b ≡ a}

The index of ≡, denoted as #(≡), is the number of equivalence classes of ≡. We will say that ≡
has finite index if #(≡) is a finite number.

Example 3. Consider the relation =3⊆ N×N such that (i, j) ∈=3 iff i mod 3 = j mod 3. It is easy
to see that =3 is reflexive, symmetric, and transitive (and hence an equivalence relation).

The equivalence class of 5 is given by

[5]=3 = {i ∈ N | i mod 3 = 2 = 5 mod 3}

The relation =3 has 3 equivalence classes given by

A0 = {i ∈ N | i mod 3 = 0}
A1 = {i ∈ N | i mod 3 = 1}
A2 = {i ∈ N | i mod 3 = 2}

Thus, #(=3) = 3.
Let us consider another equivalence relation =⊆ N × N such that (i, j) ∈= iff i = j. Now the

equivalence class for any number i is [i]= = {i}. The collection of all equivalence classes of = is
{{i} | i ∈ N}. Thus #(=) is infinite.

1.2 An Equivalence Relation on Strings

A Language theoretic equivalence

Definition 4. For any L ⊆ Σ∗, define ≡L⊆ Σ∗ × Σ∗ such that

x ≡L y iff ∀z ∈ Σ∗. xz ∈ L↔ yz ∈ L
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Proposition 5. For any language L, ≡L is an equivalence relation.

Proof left as exercise.
Examples

Example 6. Let L = {w | w has an odd number of 0s and 1s }. Observe that 110 ≡L 000 because
for any z ∈ {0, 1}∗

110z ∈ L iff z has an odd number of 1s and an even number of 0s iff 000z ∈ L

In fact, [110]≡L = {w | w has an even number of 1s and an odd number of 0s}. Consider

Aee = {w | w has an even number of 0s and 1s}
Aoe = {w | w has an even number of 0s and an odd number of 1s}
Aeo = {w | w has an odd number of 0s and an even number of 1s}
Aoo = {w | w has an odd number of 0s and 1s}

Now for any x, y ∈ Aee, we can show that x ≡L y. Let z be any string. xz ∈ L iff z has an odd
number of 0s and 1s iff yz ∈ L. Similarly one can show that any pair of strings in Aoe (or Aeo or
Aoo) are equivalent w.r.t. ≡L.

On the other hand, if x and y belong to different sets above then x 6≡L y. For example, let
x ∈ Aee and y ∈ Aoe. Then x10 ∈ L (because x10 has an odd number of 0s and 1s). But y10 6∈ L
because y10 has an even number of 0s and an odd number of 1s. The other cases are similar.

Thus, the collection of equivalence classes of ≡L is {Aee, Aoe, Aeo, Aoo}. Therefore #(≡L) = 4.

Example 7. Let P = {w |w contains 001 as a substring }. Observe that x = 10 6≡P y = 100 because
taking z = 1, we have xz = 101 6∈ P but yz = 1001 ∈ P . On the other hand, 1001 ≡P 001 because
for every z, we have 1001z ∈ L and 001z ∈ L. The equivalence classes of ≡P are

A001 = {w | w has 001 as a substring}
A0 = {w | w does not have 001 as substring and ends in 0 and the second last symbol is not 0}
A00 = {w | w does not have 001 as substring and ends in 00}
A1 = {w | w does not have 001 as substring and ends in 1 or is ε}

One can show that for any two strings x, y that belong to the same set (in the above listing),
x ≡P y, and x, y belong to different sets then x 6≡P y. We show these for one particular case;
the rest can be similarly established. Consider x, y ∈ A0. Now xz ∈ P iff either z has 001 as a
substring or z begins with 01 iff yz ∈ L. On the other hand, suppose x ∈ A0 and y ∈ A00. Take
z = 1. Now yz = y1 ∈ P because the last 3 symbols of yz is 001. On the other hand xz = x1 6∈ L
because x1 does not have 001 as a substring.

Since the collection of all equivalence classes of ≡P is {A001, A0, A00, A1}, #(≡P ) = 4.

Example 8. Consider L0n1n = {0n1n | n ≥ 0}. Consider x = 0i and y = 0j with i 6= j. x 6≡L0n1n y
because 0i1i ∈ L0n1n but 0j1i 6∈ L0n1n. In fact, for any i, [0i]≡L0n1n

= {0i}. If we consider strings

of the form 0i1j where 1 ≤ j ≤ i, we have [0i1j ]≡L0n1n
= {0k1` |k− ` = i− j} because 0i1jz ∈ L0n1n

iff z = 1j−i iff 0k1` ∈ L0n1n when k − ` = i − j. Finally, when we consider any two strings x and
y such that x and y are not of the form 0i1j , where j ≤ i, we have xz and yz are never in the set
L0n1n, and so (vaccuously) x ≡L0n1n y.

Based on the above analysis, #(≡L0n1n) is infinite.
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Properties of ≡L

Proposition 9. For any language L, if x ≡L y then for any w, xw ≡L yw.

Proof. Assume for contradiction that x ≡L y but for some w, xw 6≡L yw. Since xw 6≡L yw, there
is a z such that either (xwz ∈ L and ywz 6∈ L) or (xwz 6∈ L and ywz ∈ L). In either case, we
can conclude that x 6≡L y because taking z′ = wz, we have xz′ ∈ L and xz′ 6∈ L (or xz′ 6∈ L and
yz′ ∈ L). This contradicts the assumption that x ≡L y.

2 Myhill-Nerode Theorem

Regular languages have finite index

Proposition 10. Let L be recognized by DFA M with initial state q0. If δ̂M (q0, x) = δ̂M (q0, y) then
x ≡L y.

Proof. This proof is essentially the basis of all our DFA lower bound proofs. We repeat the crux
of the argument again here.

Suppose x, y are such that δ̂M (q0, x) = δ̂M (q0, y). It follows that for any z ∈ Σ∗, δ̂M (q0, xz) =
δ̂M (q0, yz). Hence, xz is accepted by M iff yz if accepted by M . In other words, xz ∈ L(M) = L
iff yz ∈ L(M) = L. Thus, x ≡L y.

Corollary 11. Let L be a regular language and let k = #(≡L). If M is a DFA that recognizes L
and suppose M has n states, then n ≥ k.

Proof. This our lower bound proof technique. It is the contrapositive of the previous proposition
because it says that if x 6≡L y then δ̂M (q0, x) 6= δ̂M (q0, y).

Corollary 12. If L is regular then ≡L has finite index.

Proof. If L is regular then there is a DFA M recognizing L. Suppose M has n states. Then by
proposition, we have #(≡L) ≤ n, and thus, ≡L has finitely many equivalence classes.

Finite Index implies Regularity

Proposition 13. Let L ⊆ Σ∗ be such that #(≡L) is finite. Then L is regular.

Proof. Our proof will construct a DFA that recognizes L. Since≡L has finite index, let E1, E2, . . . Ek

be the set of all the equivalence classes of ≡L. The states of the DFA ML recognizing L will be the
equivalence classes of≡L. The formal construction is as follows. The DFAML = (QL,Σ, δL, qL0 , F

L)
where

• QL = {E1, . . . Ek},
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• qL0 = [ε]≡L

• FL = {[x]≡L | x ∈ L}; observe that FL is well-defined because if x ∈ L and x ≡L y then
xε ∈ L ⇒ yε = y ∈ L.

• And δL is given by
δL([x]≡L , a) = [xa]≡L

Notice that δL is well defined because if x ≡L y then xa ≡L ya.

Correctnes of the above construction requires us to prove that L(ML) = L, i.e., ∀w. w ∈ L(ML)
iff w ∈ L. As for all DFA correctness proofs, this one will also be proved by induction on |w| by
strengthening this statement. We will show

∀w. δ̂ML(qL0 , w) = {[w]≡L}

First observe that if the stronger statement is established then correctness follows because w is
accepted by ML iff δ̂ML(qL0 , w)(= {[w]≡L})∩FL 6= ∅ iff [w]≡L ∈ FL iff w ∈ L (by definition of FL).

To complete the proof we will show

∀w. δ̂ML(qL0 , w) = {[w]≡L}

by induction on |w|.

• Base Case When |w| = 0, w = ε. We know that δ̂ML(q0, ε) = {q0} = {[ε]≡L} since q0 = [ε]≡L

• Ind. Hyp. Assume that δ̂ML(q0, w) = {[w]≡L} for all w s.t. |w| < n.

• Ind. Step Consider w = ua such that a ∈ Σ and u ∈ Σn−1.

δ̂ML(q0, w = ua) = {δL(q, a)} where δ̂ML(q0, u) = {q}
= {δL([u]≡L , a)} because by ind. hyp. q = [u]≡L

= {[ua = w]≡L}because of the defn. of δL

Corollary 14. If L is such that #(≡L) = k then the DFA with the fewest states that recognizes L
has k states.

Proof. We previously showed that #(≡L) is lower bound on the number of statates that any DFA
recognizing L must have. The above construction of the DFA in fact shows that there is a DFA
recognizing L that has exactly k states. Thus, it must be the DFA with fewest states.

Example
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Example 15. Consider L = {w |w has an odd number of 0s and 1s }. We previously observed that
the equivalence classes of ≡L are

Aee = {w | w has an even number of 0s and 1s}
Aoe = {w | w has an even number of 0s and an odd number of 1s}
Aeo = {w | w has an odd number of 0s and an even number of 1s}
Aoo = {w | w has an odd number of 0s and 1s}

Now for w ∈ Aee, w0 ∈ Aoe and w1 ∈ Aeo. Thus in DFA ML the transtion from Aee on 0 will go to
Aoe and on 1 will go to Aeo. Similarly we can figure out the other transtions. The resulting DFA
looks like

Aee Aeo

AooAoe

1

1

1

1

0 0 0 0

Example 16. For the language P = {w | w contains 001 as a substring }, we saw that the set of
equivalence classes are

A001 = {w | w has 001 as a substring}
A0 = {w | w does not have 001 as substring and ends in 0 and the second last symbol is not 0}
A00 = {w | w does not have 001 as substring and ends in 00}
A1 = {w | w does not have 001 as substring and ends in 1 or is ε}

Once again we can figure out transitions easily. For example, for w ∈ A001, w0 and w1 are A001.
The resulting DFA is

A1 A0 A00 A001

1

0

1

0

0

1

0, 1

Myhill-Nerode Theorem

Theorem 17. L is regular iff ≡L has finitely many equivalence classes.

Proof. Follows from all the observation made so far.
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