1 An equivalence relation on strings

1.1 Preliminaries

Equivalence Relations

Definition 1. A binary relation $R \subseteq A \times A$ is an equivalence relation iff
Reflexivity For every $a \in A,(a, a) \in R$,
Symmetry For every $a, b \in A$, if $(a, b) \in R$ then $(b, a) \in R$, and
Transitivity For every $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.
For an equivalence relation \equiv, we will often write $a \equiv b$ instead of $(a, b) \in \equiv$.
Definition 2. For an equivalence relation $\equiv \subseteq A \times A$, the equivalence class of $a \in A\left(\operatorname{denoted}[a]_{\equiv}\right)$ is given by

$$
[a]_{\equiv}=\{b \in A \mid b \equiv a\}
$$

The index of \equiv, denoted as $\#(\equiv)$, is the number of equivalence classes of \equiv. We will say that \equiv has finite index if $\#(\equiv)$ is a finite number.

Example 3. Consider the relation $=_{3} \subseteq \mathbb{N} \times \mathbb{N}$ such that $(i, j) \in=_{3}$ iff $i \bmod 3=j \bmod 3$. It is easy to see that $=_{3}$ is reflexive, symmetric, and transitive (and hence an equivalence relation).

The equivalence class of 5 is given by

$$
[5]_{=_{3}}=\{i \in \mathbb{N} \mid i \bmod 3=2=5 \bmod 3\}
$$

The relation $={ }_{3}$ has 3 equivalence classes given by

$$
\begin{aligned}
& A_{0}=\{i \in \mathbb{N} \mid i \bmod 3=0\} \\
& A_{1}=\{i \in \mathbb{N} \mid i \bmod 3=1\} \\
& A_{2}=\{i \in \mathbb{N} \mid i \bmod 3=2\}
\end{aligned}
$$

Thus, $\#\left(={ }_{3}\right)=3$.
Let us consider another equivalence relation $=\subseteq \mathbb{N} \times \mathbb{N}$ such that $(i, j) \in=$ iff $i=j$. Now the equivalence class for any number i is $[i]_{=}=\{i\}$. The collection of all equivalence classes of $=$ is $\{\{i\} \mid i \in \mathbb{N}\}$. Thus $\#(=)$ is infinite.

1.2 An Equivalence Relation on Strings

A Language theoretic equivalence

Definition 4. For any $L \subseteq \Sigma^{*}$, define $\equiv_{L} \subseteq \Sigma^{*} \times \Sigma^{*}$ such that

$$
x \equiv_{L} y \text { iff } \forall z \in \Sigma^{*} . x z \in L \leftrightarrow y z \in L
$$

Proposition 5. For any language L, \equiv_{L} is an equivalence relation.
Proof left as exercise.

Examples

Example 6. Let $L=\{w \mid w$ has an odd number of 0 s and 1 s$\}$. Observe that $110 \equiv_{L} 000$ because for any $z \in\{0,1\}^{*}$
$110 z \in L$ iff z has an odd number of 1 s and an even number of 0 s iff $000 z \in L$
In fact, $[110]_{\equiv_{L}}=\{w \mid w$ has an even number of 1 s and an odd number of 0 s$\}$. Consider

$$
\begin{aligned}
& A_{e e}=\{w \mid w \text { has an even number of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\} \\
& A_{o e}=\{w \mid w \text { has an even number of } 0 \mathrm{~s} \text { and an odd number of } 1 \mathrm{~s}\} \\
& A_{e o}=\{w \mid w \text { has an odd number of } 0 \mathrm{~s} \text { and an even number of } 1 \mathrm{~s}\} \\
& A_{o o}=\{w \mid w \text { has an odd number of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\}
\end{aligned}
$$

Now for any $x, y \in A_{e e}$, we can show that $x \equiv_{L} y$. Let z be any string. $x z \in L$ iff z has an odd number of 0 s and 1 s iff $y z \in L$. Similarly one can show that any pair of strings in $A_{o e}$ (or $A_{e o}$ or $A_{o o}$) are equivalent w.r.t. \equiv_{L}.

On the other hand, if x and y belong to different sets above then $x \not \equiv_{L} y$. For example, let $x \in A_{e e}$ and $y \in A_{o e}$. Then $x 10 \in L$ (because $x 10$ has an odd number of 0 s and 1 s). But $y 10 \notin L$ because $y 10$ has an even number of 0 s and an odd number of 1 s . The other cases are similar.

Thus, the collection of equivalence classes of \equiv_{L} is $\left\{A_{e e}, A_{o e}, A_{e o}, A_{o o}\right\}$. Therefore $\#\left(\equiv_{L}\right)=4$.
Example 7. Let $P=\{w \mid w$ contains 001 as a substring $\}$. Observe that $x=10 \not \equiv P y=100$ because taking $z=1$, we have $x z=101 \notin P$ but $y z=1001 \in P$. On the other hand, $1001 \equiv_{P} 001$ because for every z, we have $1001 z \in L$ and $001 z \in L$. The equivalence classes of \equiv_{P} are

$$
\begin{aligned}
& A_{001}=\{w \mid w \text { has } 001 \text { as a substring }\} \\
& A_{0}=\{w \mid w \text { does not have } 001 \text { as substring and ends in } 0 \text { and the second last symbol is not } 0\} \\
& A_{00}=\{w \mid w \text { does not have } 001 \text { as substring and ends in } 00\} \\
& A_{1}=\{w \mid w \text { does not have } 001 \text { as substring and ends in } 1 \text { or is } \epsilon\}
\end{aligned}
$$

One can show that for any two strings x, y that belong to the same set (in the above listing), $x \equiv_{P} y$, and x, y belong to different sets then $x \not \equiv_{P} y$. We show these for one particular case; the rest can be similarly established. Consider $x, y \in A_{0}$. Now $x z \in P$ iff either z has 001 as a substring or z begins with 01 iff $y z \in L$. On the other hand, suppose $x \in A_{0}$ and $y \in A_{00}$. Take $z=1$. Now $y z=y 1 \in P$ because the last 3 symbols of $y z$ is 001 . On the other hand $x z=x 1 \notin L$ because $x 1$ does not have 001 as a substring.

Since the collection of all equivalence classes of \equiv_{P} is $\left\{A_{001}, A_{0}, A_{00}, A_{1}\right\}$, \# $\left(\equiv_{P}\right)=4$.
Example 8. Consider $L_{0 n 1 n}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. Consider $x=0^{i}$ and $y=0^{j}$ with $i \neq j . x \not 三_{L_{0 n 1 n}} y$ because $0^{i} 1^{i} \in L_{0 n 1 n}$ but $0^{j} 1^{i} \notin L_{0 n 1 n}$. In fact, for any $i,\left[0^{i}\right]_{E_{0 n 1 n}}=\left\{0^{i}\right\}$. If we consider strings of the form $0^{i} 1^{j}$ where $1 \leq j \leq i$, we have $\left[0^{i} 1^{j}\right]_{\equiv_{L_{0 n 1 n}}}=\left\{0^{k} 1^{\ell} \mid k-\ell=i-j\right\}$ because $0^{i} 1^{j} z \in L_{0 n 1 n}$ iff $z=1^{j-i}$ iff $0^{k} 1^{\ell} \in L_{0 n 1 n}$ when $k-\ell=i-j$. Finally, when we consider any two strings x and y such that x and y are not of the form $0^{i} 1^{j}$, where $j \leq i$, we have $x z$ and $y z$ are never in the set $L_{0 n 1 n}$, and so (vaccuously) $x \equiv_{L_{0 n 1 n}} y$.

Based on the above analysis, \#($\left.\equiv_{L_{0 n 1 n}}\right)$ is infinite.

Properties of \equiv_{L}

Proposition 9. For any language L, if $x \equiv_{L} y$ then for any $w, x w \equiv_{L} y w$.
Proof. Assume for contradiction that $x \equiv_{L} y$ but for some $w, x w \not \equiv_{L} y w$. Since $x w \not \equiv_{L} y w$, there is a z such that either $(x w z \in L$ and $y w z \notin L)$ or $(x w z \notin L$ and $y w z \in L)$. In either case, we can conclude that $x \not \equiv_{L} y$ because taking $z^{\prime}=w z$, we have $x z^{\prime} \in L$ and $x z^{\prime} \notin L$ (or $x z^{\prime} \notin L$ and $y z^{\prime} \in L$). This contradicts the assumption that $x \equiv_{L} y$.

2 Myhill-Nerode Theorem

Regular languages have finite index

Proposition 10. Let L be recognized by DFA M with initial state q_{0}. If $\hat{\delta}_{M}\left(q_{0}, x\right)=\hat{\delta}_{M}\left(q_{0}, y\right)$ then $x \equiv_{L} y$.

Proof. This proof is essentially the basis of all our DFA lower bound proofs. We repeat the crux of the argument again here.

Suppose x, y are such that $\hat{\delta}_{M}\left(q_{0}, x\right)=\hat{\delta}_{M}\left(q_{0}, y\right)$. It follows that for any $z \in \Sigma^{*}, \hat{\delta}_{M}\left(q_{0}, x z\right)=$ $\hat{\delta}_{M}\left(q_{0}, y z\right)$. Hence, $x z$ is accepted by M iff $y z$ if accepted by M. In other words, $x z \in \mathbf{L}(M)=L$ iff $y z \in \mathbf{L}(M)=L$. Thus, $x \equiv_{L} y$.

Corollary 11. Let L be a regular language and let $k=\#\left(\equiv_{L}\right)$. If M is a DFA that recognizes L and suppose M has n states, then $n \geq k$.

Proof. This our lower bound proof technique. It is the contrapositive of the previous proposition because it says that if $x \not \equiv_{L} y$ then $\hat{\delta}_{M}\left(q_{0}, x\right) \neq \hat{\delta}_{M}\left(q_{0}, y\right)$.

Corollary 12. If L is regular then \equiv_{L} has finite index.
Proof. If L is regular then there is a DFA M recognizing L. Suppose M has n states. Then by proposition, we have $\#\left(\equiv_{L}\right) \leq n$, and thus, \equiv_{L} has finitely many equivalence classes.

Finite Index implies Regularity

Proposition 13. Let $L \subseteq \Sigma^{*}$ be such that $\#\left(\equiv_{L}\right)$ is finite. Then L is regular.
Proof. Our proof will construct a DFA that recognizes L. Since \equiv_{L} has finite index, let $E_{1}, E_{2}, \ldots E_{k}$ be the set of all the equivalence classes of \equiv_{L}. The states of the DFA M^{L} recognizing L will be the equivalence classes of \equiv_{L}. The formal construction is as follows. The DFA $M^{L}=\left(Q^{L}, \Sigma, \delta^{L}, q_{0}^{L}, F^{L}\right)$ where

[^0]- $q_{0}^{L}=[\epsilon]_{\equiv_{L}}$
- $F^{L}=\left\{[x]_{\equiv_{L}} \mid x \in L\right\}$; observe that F^{L} is well-defined because if $x \in L$ and $x \equiv_{L} y$ then $x \epsilon \in L \Rightarrow y \epsilon=y \in L$.
- And δ^{L} is given by

$$
\delta^{L}\left([x]_{\equiv_{L}}, a\right)=[x a]_{\equiv_{L}}
$$

Notice that δ^{L} is well defined because if $x \equiv_{L} y$ then $x a \equiv_{L} y a$.
Correctnes of the above construction requires us to prove that $\mathbf{L}\left(M^{L}\right)=L$, i.e., $\forall w . w \in \mathbf{L}\left(M^{L}\right)$ iff $w \in L$. As for all DFA correctness proofs, this one will also be proved by induction on $|w|$ by strengthening this statement. We will show

$$
\forall w \cdot \hat{\delta}_{M^{L}}\left(q_{0}^{L}, w\right)=\left\{[w]_{\equiv_{L}}\right\}
$$

First observe that if the stronger statement is established then correctness follows because w is accepted by M^{L} iff $\hat{\delta}_{M^{L}}\left(q_{0}^{L}, w\right)\left(=\left\{[w]_{\equiv_{L}}\right\}\right) \cap F^{L} \neq \emptyset$ iff $[w]_{\equiv_{L}} \in F^{L}$ iff $w \in L$ (by definition of F^{L}).

To complete the proof we will show

$$
\forall w \cdot \hat{\delta}_{M^{L}}\left(q_{0}^{L}, w\right)=\left\{[w]_{\equiv_{L}}\right\}
$$

by induction on $|w|$.

- Base Case When $|w|=0, w=\epsilon$. We know that $\hat{\delta}_{M^{L}}\left(q_{0}, \epsilon\right)=\left\{q_{0}\right\}=\left\{[\epsilon]_{\equiv_{L}}\right\}$ since $q_{0}=[\epsilon]_{\equiv_{L}}$
- Ind. Hyp. Assume that $\hat{\delta}_{M^{L}}\left(q_{0}, w\right)=\left\{[w]_{\equiv_{L}}\right\}$ for all w s.t. $|w|<n$.
- Ind. Step Consider $w=u a$ such that $a \in \Sigma$ and $u \in \Sigma^{n-1}$.

$$
\begin{aligned}
\hat{\delta}_{M^{L}}\left(q_{0}, w=u a\right) & =\left\{\delta^{L}(q, a)\right\} \text { where } \hat{\delta}_{M^{L}}\left(q_{0}, u\right)=\{q\} \\
& =\left\{\delta^{L}\left([u]_{\equiv_{L}}, a\right)\right\} \text { because by ind. hyp. } q=[u]_{\equiv_{L}} \\
& =\left\{[u a=w]_{\equiv_{L}}\right\} \text { because of the defn. of } \delta^{L}
\end{aligned}
$$

Corollary 14. If L is such that $\#\left(\equiv_{L}\right)=k$ then the DFA with the fewest states that recognizes L has k states.

Proof. We previously showed that $\#\left(\equiv_{L}\right)$ is lower bound on the number of statates that any DFA recognizing L must have. The above construction of the DFA in fact shows that there is a DFA recognizing L that has exactly k states. Thus, it must be the DFA with fewest states.

Example

Example 15. Consider $L=\{w \mid w$ has an odd number of 0 s and 1 s$\}$. We previously observed that the equivalence classes of \equiv_{L} are

$$
\begin{aligned}
& A_{e e}=\{w \mid w \text { has an even number of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\} \\
& A_{o e}=\{w \mid w \text { has an even number of } 0 \mathrm{~s} \text { and an odd number of } 1 \mathrm{~s}\} \\
& A_{e o}=\{w \mid w \text { has an odd number of } 0 \mathrm{~s} \text { and an even number of } 1 \mathrm{~s}\} \\
& A_{o o}=\{w \mid w \text { has an odd number of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}\}
\end{aligned}
$$

Now for $w \in A_{e e}, w 0 \in A_{o e}$ and $w 1 \in A_{e o}$. Thus in DFA M^{L} the transtion from $A_{e e}$ on 0 will go to $A_{o e}$ and on 1 will go to $A_{e o}$. Similarly we can figure out the other transtions. The resulting DFA looks like

Example 16. For the language $P=\{w \mid w$ contains 001 as a substring $\}$, we saw that the set of equivalence classes are

$$
\begin{aligned}
& A_{001}=\{w \mid w \text { has } 001 \text { as a substring }\} \\
& A_{0}=\{w \mid w \text { does not have } 001 \text { as substring and ends in } 0 \text { and the second last symbol is not } 0\} \\
& A_{00}=\{w \mid w \text { does not have } 001 \text { as substring and ends in } 00\} \\
& A_{1}=\{w \mid w \text { does not have } 001 \text { as substring and ends in } 1 \text { or is } \epsilon\}
\end{aligned}
$$

Once again we can figure out transitions easily. For example, for $w \in A_{001}, w 0$ and $w 1$ are A_{001}. The resulting DFA is

Myhill-Nerode Theorem

Theorem 17. L is regular iff \equiv_{L} has finitely many equivalence classes.
Proof. Follows from all the observation made so far.

[^0]: - $Q^{L}=\left\{E_{1}, \ldots E_{k}\right\}$,

