Complementation of Büchi automaton

From Wikipedia, the free encyclopedia

In <u>automata theory</u>, **complementation of a Büchi automaton** is <u>construction</u> of another <u>Büchi</u> <u>automaton</u> that recognizes complement of the <u> ω -regular language</u> recognized by the given Büchi automaton. Existence of algorithms for this construction proves that the set of ω -regular languages and Büchi automata are <u>closed under</u> complementation.

This construction is particularly hard relative to the constructions for the other <u>closure properties of</u> <u>Büchi automata</u>. The first construction was presented by Büchi in 1962.[1] Later, other constructions were developed that enabled efficient and optimal complementation.[2][3][4][5]

Büchi's construction

Büchi presented[1] a doubly exponential complement construction in a logical form. Here, we have his construction in the modern notation used in automata theory. Let $A = (Q, \Sigma, \Delta, Q_0, \mathbf{F})$ be a <u>Büchi</u>

automaton. Let \sim_A be an equivalence relation over elements of Σ^+ such that for each $v, w \in \Sigma^+$, $v \sim_A w$ iff for all $p, q \in Q$, A has a run from p to q over v iff this is possible over w and furthermore A has a run via \mathbf{F} from p to q over v iff this is possible over w. By definition, each map $f: Q \to 2^Q \times 2^Q$ defines a class of \sim_A . We denote the class by \mathbf{L}_f . We interpret f in the following way. $w \in \mathbf{L}_f$ iff, for each state $p \in Q$ and $(\mathbf{Q}_1, \mathbf{Q}_2) = f(p)$, w can move automaton A from p to each state in \mathbf{Q}_1 and to each state in \mathbf{Q}_2 via a state in \mathbf{F} . Note that $\mathbf{Q}_2 \subseteq \mathbf{Q}_1$. The following three theorems provides a construction of the complement of A using the equivalence classes of \sim_A .

Theorem 1: \sim_A has finitely many equivalent classes and each class is a <u>regular language</u>.

Proof: Since there are finitely many f: $Q \rightarrow 2^Q \times 2^Q$, \sim_A has finitely many equivalent classes. Now we show that L_f is a regular language. For p,q $\in Q$ and i $\in \{0,1\}$, let A_{i,p,q} =

({0,1}×Q, Σ , $\Delta_1 \cup \Delta_2$, {(0,p)}, {(i,q)}) be a <u>nondeterministic finite automaton</u>, where $\Delta_1 =$ { ((0,q_1),(0,q_2)) | (q_1,q_2) $\in \Delta$ } \cup { ((1,q_1),(1,q_2)) | (q_1,q_2) $\in \Delta$ }, and $\Delta_2 =$ { ((0,q_1),(1,q_2)) | q_1 \in **F** \wedge (q_1,q_2) $\in \Delta$ }. Let Q' \subseteq Q. Let $\alpha_{p,Q'} = \cap$ { L(A_{1,p,q}) |q \in Q'}, which is the set of words that can move A from p to all the states in Q' via some state in **F**. Let $\beta_{p,Q'} = \cap$ { L(A_{0,p,q})-L(A_{1,p,q})- ϵ |q \in Q'}, which is the set of non-empty words that can move A from p to all the states in **F**. Let $\gamma_{p,Q'} = \cap$ { Σ^+ -L(A_{0,p,q}) |q \in Q'}, which is the set of non-empty words that can move A from p to all the states in Q is the set of non-empty words that can move A from p to all the states in Q is the set of non-empty words that can move A from p to all the states in Q is the set of non-empty words that can move A from p to all the states in Q is the set of non-empty words that can move A from p to all the states in Q is the set of non-empty words that can move A from p to all the states in Q is the set of non-empty words that can not move A from p to any of the states in Q'. By definitions, L_f = \cap { $\alpha_{p,Q2} \cap \beta_{p,Q1-Q2} \cap \gamma_{p,Q-Q1} | (Q_1,Q_2) = f(p) \land p \in Q$ }. **Theorem 2:** For each $w \in \Sigma^{\omega}$, there are \sim_A classes L_f and L_g such that $w \in L_f(L_g)^{\omega}$.

Proof: We will use <u>infinite Ramsey theorem</u> to prove this theorem. Let $w = a_0 a_1 \dots$ and $w(i,j) = a_i \dots a_{j-1}$. Consider the set of natural numbers **N**. Let equivalence classes of \sim_A be the colors of subsets of **N** of size 2. We assign the colors as follows. For each i < j, let the color of $\{i,j\}$ be the equivalence class in which w(i,j) occurs. Due to infinite Ramsey theorem, we can find infinite set $X \subseteq \mathbf{N}$ such that each subset of X of size 2 has same color. Let $0 < i_0 < i_1 < i_2 \dots \in X$. Let f be a defining map of an equivalence class such that $w(0,i_0) \in L_f$. Let g be a defining map of an equivalence class such that for each $j > 0, w(i_{i-1},i_i) \in L_g$. Therefore, $w \in L_f(L_g)^{\omega}$.

Theorem 3: Let L_f and L_g be equivalence classes of \sim_A . $L_f(L_g)^{\omega}$ is either subset of L(A) or disjoint from L(A).

Proof: Lets suppose word $w \in L(A) \cap L_f(L_g)^{\omega}$. Otherwise theorem holds trivially. Let r be the accepting run of A over input w. We need to show that each word $w' \in L_f(L_g)^{\omega}$ is also in L(A), i.e., there exist a run r' of A over input w' such that states in F occurs in r' infinitely often. Since $w \in L_f(L_g)^{\omega}$, let $w_0w_1w_2... = w$ such that $w_0 \in L_f$ and for each i > 0, $w_i \in L_g$. Let s_i be the state in r after consuming $w_0...w_i$. Let I be a set of indices such that $i \in I$ iff the run segment in r from s_i to s_{i+1} contains a state from F. I must be an infinite set. Similarly, we can split the word w'. Let $w'_0w'_1w'_2... = w'$ such that $w'_0 \in L_f$ and for each i > 0, $w'_i \in L_g$. We construct r' inductively in the following way. Let first state of r' be same as r. By definition of L_f , we can choose a run segment on word w'_0 to reach s_0 . By induction hypothesis, we have a run on $w'_0...w'_i$ that reaches to s_i . By definition of L_g , we can extend the run along the word segment w'_{i+1} such that the extension reaches s_{i+1} and visits a state in F if $i \in I$. The r' obtained from this process will have infinitely many run segments containing states from F, since I is infinite set. Therefore, r' is an accepting run and $w' \in L(A)$.

Due to the above theorems, we can represent Σ^{ω} -L(A) as finite union of $\underline{\omega}$ -regular languages of the from $L_f(L_g)^{\omega}$, where L_f and L_g are equivalence classes of \sim_A . Therefore, Σ^{ω} -L(A) is an ω -regular language. We can translate the language into a Büchi automaton. This construction is doubly exponential in terms of size of A.

References

- 1.
- <u>Büchi, J. R.</u> (1962), "On a decision method in restricted second order arithmetic", Proc. International Congress on Logic, Method, and Philosophy of Science, Stanford, 1960, Stanford: Stanford University Press, pp. 1–12.
- McNaughton, R. (1966), "Testing and generating infinite sequences by a finite automaton", Information and Control, 9: 521–530, <u>doi:10.1016/s0019-9958(66)80013-x</u>.

- Sistla, A. P.; <u>Vardi, M. Y.</u>; <u>Wolper, P.</u> (1987), "The complementation problem for Büchi automata with applications to temporal logic", <u>Theoretical Computer Science</u>, **49**: 217–237, <u>doi:10.1016/0304-3975(87)90008-9</u>.
- <u>Safra, S.</u> (October 1988), "On the complexity of ω-automata", Proc. 29th IEEE <u>Symposium</u> on Foundations of Computer Science, White Plains, New York, pp. 319–327.
- 5. Kupferman, O.; <u>Vardi, M. Y.</u> (July 2001), "Weak alternating automata are not that weak", ACM Transactions on Computational Logic, **2** (2): 408–429.

٠