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In automata theory, complementation of a Büchi automaton is construction of another Büchi 
automaton that recognizes complement of the ω-regular language recognized by the given Büchi 
automaton. Existence of algorithms for this construction proves that the set of ω-regular languages 
and Büchi automata are closed under complementation.

This construction is particularly hard relative to the constructions for the other closure properties of 
Büchi automata. The first construction was presented by Büchi in 1962.[1] Later, other 
constructions were developed that enabled efficient and optimal complementation.[2]  [3]  [4]  [5]

Büchi's construction
Büchi presented[1] a doubly exponential complement construction in a logical form. Here, we have 

his construction in the modern notation used in automata theory. Let A = (Q,Σ,Δ,Q0,F) be a Büchi 

automaton. Let ~A be an equivalence relation over elements of Σ+ such that for each v,w  Σ∈ +, 

v ~A w iff for all p,q  ∈ Q, A has a run from p to q over v iff this is possible over w and furthermore 

A has a run via F from p to q over v iff this is possible over w. By definition, each map f:Q → 2Q × 

2Q defines a class of ~A. We denote the class by Lf. We interpret f in the following way. w  L∈ f iff, 

for each state p  ∈ Q and (Q1,Q2)= f(p), w can move automaton A from p to each state in Q1 and to 

each state in Q2 via a state in F. Note that Q2  Q⊆ 1. The following three theorems provides a 

construction of the complement of A using the equivalence classes of ~A.

Theorem 1: ~A has finitely many equivalent classes and each class is a regular language.

Proof: Since there are finitely many f:Q → 2Q × 2Q, ~A has finitely many equivalent classes. Now 

we show that Lf is a regular language. For p,q  ∈ Q and i  {0,1}, let A∈ i,p,q = 

( {0,1}×Q, Σ, Δ1 Δ∪ 2, {(0,p)}, {(i,q)} ) be a nondeterministic finite automaton, where Δ1 = 

{ ((0,q1),(0,q2)) | (q1,q2)  Δ}  { ((1,q∈ ∪ 1),(1,q2)) | (q1,q2)  Δ}, and Δ∈ 2 = { ((0,q1),(1,q2)) | q1  ∈ F 

 (q∧ 1,q2)  Δ }. Let Q'  ∈ ⊆ Q. Let αp,Q' = ∩{ L(A1,p,q) |q  Q'}, which is the set of words that can ∈

move A from p to all the states in Q' via some state in F. Let βp,Q' = ∩{ L(A0,p,q)-L(A1,p,q)-ε |q  ∈

Q'}, which is the set of non-empty words that can move A from p to all the states in Q' and does not 

have a run that passes through any state in F. Let γp,Q' = ∩{ Σ+-L(A0,p,q) |q  Q'}, which is the set ∈

of non-empty words that can not move A from p to any of the states in Q'. By definitions, Lf = 

∩{ αp,Q2∩ βp,Q1-Q2∩ γp,Q-Q1 |(Q1,Q2)=f(p)  p  ∧ ∈ Q}.
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Theorem 2: For each w  Σ∈ ω, there are ~A classes Lf and Lg such that w  L∈ f(Lg)ω.

Proof: We will use infinite Ramsey theorem to prove this theorem. Let w =a0a1... and w(i,j) = ai...aj-

1. Consider the set of natural numbers N. Let equivalence classes of ~A be the colors of subsets of N

of size 2. We assign the colors as follows. For each i < j, let the color of {i,j} be the equivalence 
class in which w(i,j) occurs. Due to infinite Ramsey theorem, we can find infinite set X  ⊆ N such 

that each subset of X of size 2 has same color. Let 0 < i0 < i1 < i2 ....  X. Let f be a defining map of∈

an equivalence class such that w(0,i0)  L∈ f. Let g be a defining map of an equivalence class such 

that for each j>0,w(ij-1,ij)  L∈ g. Therefore, w  L∈ f(Lg)ω.

Theorem 3: Let Lf and Lg be equivalence classes of ~A. Lf(Lg)ω is either subset of L(A) or disjoint 

from L(A).

Proof: Lets suppose word w  ∈ L(A) ∩ Lf(Lg)ω. Otherwise theorem holds trivially. Let r be the 

accepting run of A over input w. We need to show that each word w'  L∈ f(Lg)ω is also in L(A), i.e., 

there exist a run r' of A over input w' such that states in F occurs in r' infinitely often. Since w  ∈

Lf(Lg)ω, let w0w1w2... = w such that w0  L∈ f and for each i > 0, wi  L∈ g. Let si be the state in r after

consuming w0...wi. Let I be a set of indices such that i  I iff the run segment in r from s∈ i to si+1 

contains a state from F. I must be an infinite set. Similarly, we can split the word w'. Let 

w'0w'1w'2... = w' such that w'0  L∈ f and for each i > 0, w'i  L∈ g. We construct r' inductively in the 

following way. Let first state of r' be same as r. By definition of Lf, we can choose a run segment on

word w'0 to reach s0. By induction hypothesis, we have a run on w'0...w'i that reaches to si. By 

definition of Lg, we can extend the run along the word segment w'i+1 such that the extension 

reaches si+1 and visits a state in F if i  I. The r' obtained from this process will have infinitely ∈

many run segments containing states from F, since I is infinite set. Therefore, r' is an accepting run 
and w'  ∈ L(A).

Due to the above theorems, we can represent Σω-L(A) as finite union of ω-regular languages of the 

from Lf(Lg)ω, where Lf and Lg are equivalence classes of ~A. Therefore, Σω-L(A) is an ω-regular 

language. We can translate the language into a Büchi automaton. This construction is doubly 
exponential in terms of size of A.
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