
Lecture 1: Regular Languages and Monoids

We shall assume familiarity with the definitions and basic results regarding regular lan-
guages and finite automata (as presented in Hopcroft and Ullman [1] or Kozen [2]) and begin
by recalling their connections to Myhill-Nerode relations.

1 Myhill-Nerode Characterization

An equivalence relation ∼ over Σ∗

• is a right congruence if x ∼ y implies xz ∼ yz for every x, y, z ∈ Σ∗

• is of finite index if Σ∗/∼ is finite.

• saturates a language L if x ∼ y ⇒ (x ∈ L iff y ∈ L). Or equivalently, L is the union
of some of the equivalence classes of ∼, or equivalently for each x ∈ Σ∗, [x]∼∩L = ∅ or
[x]∼ ⊆ L. This is illustrated by the following diagram. The entire rectangle corresponds
to Σ∗ and the individual regions inside are the equivalence classes under ∼ and the
regions enclosed by the dotted lines are those that are contained in L. Note that every
region is either entirely contained in L or is disjoint from L.

������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Theorem 1 (Myhill-Nerode) A language L is regular if and only if there is a right congru-
ence ∼ of finite index, that saturates L.

From any finite automaton A = (Q,Σ, δ, s, F) recognising L it is easy to construct a right
congruence ∼A of the desired kind.

x ∼A y ⇐⇒ δ(s, x) = δ(s, y)

For the converse, an automaton recognising L can be constructed as A∼ = (Σ∗/∼,Σ, δ, [ǫ], F)
where, F = {[x]∼ | x ∈ L} and δ([x]∼, a) = [xa]∼.

With every language L (regular or otherwise) one can associate the “coarsest” right
congruence that saturates L (∼L) as follows:

x ∼L y ⇐⇒ ∀z.(xz ∈ L ⇐⇒ yz ∈ L)

1

Quite evidently this relation is a right congruence that saturates L. It is also the coarsest
because, if ∼ is any other right congruence that saturates L and x ∼ y then x ∼L y —
suppose not, then there is an z such that (w.l.o.g.) xz ∈ L and yz 6∈ L, contradicting the
right congruent property of ∼. Thus, not only does ∼L saturate L, but further if ∼ is any
right congruence saturing L then the equivalences classes of ∼ can be coalesced to form the
equivalence classes of ∼L.

In the above diagram the regions enclosed by the solid lines are the equivalence classes
induced by ∼ and they are all entirely contained inside the equivalence classes induced by
∼L (the regions enclosed by the dotted lines).

If the language L is regular then ∼L is of finite index (since we can start with any finite
index relation saturating L and coalesce its states to obtain ∼L). The automaton obtained
from ∼L is the minimal automaton for L.

An equivalence relation ≡ is said to be a congruence if x ≡ y implies uxv ≡ uyv for
all u, v, x, y ∈ Σ∗. It is quite easy to show that a language is regular if and only if there is
congruence of finite index that saturates L. The construction of the automaton recognising
L from the congruence is identical to the one described above. For the other direction,
starting with an automaton A = (Q,Σ, δ, s, F) with no unreachable states, define x ≡A y iff
for all q ∈ Q, δ(q, x) = δ(q, y). (Check that this relation is indeed a congruence and that it
saturates L.)

One can also define a canonical congruence for each language L, given by x ≡L y if and
only if for all u, v ∈ Σ∗ uxv ∈ L if and only if uyv ∈ L. Understandably, this is the “coarsest”
congruence saturating L (verify this), so that starting with any other congruence saturating
L, one may obtain this congruence by coalescing some of the equivalence classes together.

Exercise: Verify that if A is the minimal automaton for L then ≡A is ≡L.

2 Monoids

A monoid is set M along with a associative binary operation . and a special element e ∈ M
which acts as the identity element w.r.t to .. We write (M, ., e) to describe a monoid, but
very often we shall write M instead. (N,+, 0) is a monoid and so is (Σ∗, ., ǫ) where . is the
concatenation operation. These monoids are “infinite” as the underlying set is an infinite
set. An example of a finite monoid is (Zn,+, 0). Another class of finite monoids comes from

2

functions over a finite set. Let S be a set and let F be the set of functions from S to S
and let IdS be the identity function. Define f ◦ g to be the composition of g with f , i.e.,
f ◦ g(x) = g(f(x)). Then (F, ◦, IdS) forms a monoid.

Given a finite automaton A = (Q,Σ, δ, s, F), the set of functions on Q defines a finite
monoid. But there is a second and significantly more interesting monoid that one can
associate with A. Let MA = ({δ̂x | x ∈ Σ∗}, ◦, δ̂ǫ = IdQ) where, δ̂x is the function from Q to

Q defined by δ̂x(q) = δ̂(q, x). This monoid consists of those functions over Q that are defined
as transition functions of words over Σ∗. Thus, it forms a submonoid of the set of functions
over Q (any subset of a monoid containing the identity and closed w.r.t. the operation of
the monoid is called a submonoid). This monoid associated with the automaton A is called
the transition monoid of A and will play a critical role in the following developments.

A (homo)morphism from a monoid (M, ., e) to a monoid (N, ∗, f) is a function h : M −→
N such that h(x.y) = h(x)∗h(y) and h(e) = f . For example, len : Σ∗ −→ N with len(x) = |x|
is a morphism. The monoid (Σ∗, ., ǫ) is also called as the free monoid over Σ because, given
any monoid (N, ∗, f) and a function f : Σ −→ N , we can define a morphism f̂ from (Σ∗, ., ǫ)
to (N, ∗, f) such that f̂(a) = f(a) for each a ∈ Σ (the definition of f̂ is quite obvious).

2.1 Monoids as Recognizers

We shall use monoids as recognizers of languages. Given a monoid (M, ., e), a subset X of
M and a morphism h from Σ∗ to M , the language defined by X w.r.t. to the morphism h is
h−1(X). We say that a language L is recognised by a monoid M if there is a morphism h
and X ⊆ M such that L = h−1(X). The interesting case is when M is a finite monoid.

Theorem 2 L is a regular language if and only if it is recognised by some finite monoid.

Proof: Suppose L is recognised by the monoidM via the morphism h and the subset X . De-
fine the automaton AM = (M,Σ, δ, e,X) where δ(m, a) = m.h(a). Then, δ̂(m, a1a2 . . . an) =
m.h(a1).h(a2). . . . h(an) and therefore δ̂(e, a1a2 . . . an) = e.h(a1).h(a2) . . . h(an) = h(a1a2 . . . an).
Thus, L(AM) = {x | h(x) ∈ X} = L(AM) = L.

For the converse, let A be any automaton recogising L. Consider the transition monoid
MA = ({δ̂x | x ∈ Σ∗}, ◦, IdQ) and the morphism h from Σ∗ to MA defined by h(x) = δ̂x. The

pre-image under h of X = {δ̂x | δ̂(s, x) ∈ F} is easily seen to be L. Thus, A is recognised
by a finite monoid.

2.2 The Syntactic Monoid

With each regular language L we can associate a canonical (in a manner to be explained
soon) monoid that recognizes L. We associate a monoid structure on Σ∗/≡L by [x]≡L

.[y]≡L
=

[xy]≡L
. It is easy to check that with this operation Σ∗/≡L forms a monoid with [ǫ]≡L

as the
identity. The natural morphism ηL defined by ηL(x) = [x]≡L

recognises L as the pre-image
of X = {[x]≡L

| x ∈ L}. This monoid, denoted Syn(L), is called the syntactic monoid of L.

3

Exercise: Show by an example that ∼L is not a congruence in general. Thus, there is no
monoid structure on Σ∗/∼L.

Exercise: What is the syntactic monoid of the language (aa)∗ ?

This monoid is canonical because, first of all, this is the smallest monoid that recognises
L, and more importantly, ηL factors via every homomorphism (to any monoid M) that
recognises L. This is the import of the following theorem

Theorem 3 Let L be a regular language and suppose that L is recognised by the M via the
morphism h. Then there is a morphism hL from h(M) (where h(M) is the submonoid of M
consisting of all the elements in the image of h) to Syn(L) such that ηL = h ◦ hL.

Σ∗
h

- h(Σ)∗ ⊂ - M

Syn(L)

hL

?

η
L

-

Proof: Note that ≡h defined by x ≡h y if and only if h(x) = h(y) is a congruence that
saturates L: If h(x) = h(y) then h(uxv) = h(u)h(x)h(v) = h(u)h(y)h(v) = h(uyv). Thus,
≡h is a congruence. Further, if x ≡h y and h(x) ∈ X then h(y) ∈ X . Hence it also saturates
L. Thus, ≡h refines ≡L (i.e. each equivalence class of ≡h is completely contained in some
equivalence class of ≡L.)

Note that ≡ηL is the same as ≡L. Hence, we may define the function hL from h(M) to
Syn(L) as hL(h(x)) = ηL(x). This function is well-defined since we know that h(x) = h(y)
implies ηL(x) = ηL(y). Clearly this map hL is a morphism and by construction hL ◦ h(x) =
ηL(x).

Exercise: Prove that the syntactic monoid of a regular language L is isomorphic to the
transition monoid of the minimal automaton for L.

We say that a monoid M divides a monoid N (written M ≺ N) if M is the homomorphic
image of a submonoid of N . In this language, the above theorem can be restated as

Theorem 4 A monoid M recognises a regular language L only if Syn(L) ≺ M .

We shall return to the study of regular languages via monoids after a couple of lectures.
We shall see how we can use the structure of syntactic monoids to characterise subclasses of
regular languages.

4

References

[1] John E. Hopcroft and Jeffrey D. Ullman: Introduction to automata theory, languages
and computation, Addison-Wesley, 1979.

[2] Dexter Kozen: Automata and Computability, Springer-Verlag, 1997.

5

