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Introduction

Reactive systems consist of several components which continuously interact with each other
(and, most of the time, do not terminate). In the most basic case such a system would consist
of two components, namely a controller program and its environment.

Example 0.1.

1. Signal-box:
Controller program vs. Railway service (environment)

2. Operating system:
Operating system program vs. User (environment)

�

A reactive system is modeled by a two-player-game - Player 0 (she) vs. Player 1 (he). Infinite
games are generated by alternate actions which do not need to be strictly rotational.

In order to decide on a winner, a winning condition for infinite games needs to be formu-
lated (e.g. for Player 0). It’s the goal of Player 0 to construct a winning strategy which, for
every possible course of actions by Player 1, results in fulfilling the winning condition, and
therefore in winning the game for Player 0.

Example 0.2. Modeling of an elevator control for 10 levels

Player 0: Elevator control

Player 1: User

The system state is described by the following properties:

1. A set of level numbers that are requested by pushing a button (either on the re-
spective floor or in the elevator). This set is represented by a bitvector (b1, . . . , b10)
(with bi = 1 ⇔ level i is requested.)

2. A level number for the position of the elevator (i ∈ {1, . . . , 10}).
3. An indicator which (0|1) shows whose turn it is.

State space: Let B = {0, 1}. The state space of the system is

Z = B10 × {1, . . . , 10} × {0, 1}.

We note: |Z| ∼= 20000 states
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Transitions: We define two different kinds of transition. They lead from the 0-states, where
it is the turn of Player 0 (elevator controller), to 1-states, where it is the users turn,
and vice versa.

door closes, elevator moves,

delivers people

Player 0 Player 1

b1, . . . , b10, i, 0 b�1 . . . b�10, i
�, 1

with i �= i�, b�i� = 0, b�j = bj for j �= i�

Player 1 Player 0

users

push buttons

b1, . . . , b10, i, 1 b�1 . . . b�10, i, 0

with bj ≤ b�j for every j ∈ {1, . . . , 10}.
State space and transitions define the so called “system graph” or “game graph”.

Examples for winning conditions:

1. Every requested floor is served at some time.

2. The elevator does not skip requested floors (bi = 1 � bi = 0), except on the way
to level 10 (on the way to the top management :-)

3. On the way to level 10 the elevator stops at most one time.

4. The elevator always returns to level 1.

5. . . .

�

Important questions that need to be answered during the course of this lecture are:

• Can any controller program fulfill all demands? (Then we would have an implementation
of a winning strategy.)

• Does a finite memory suffice and how large does it have to be?

• Can we automatically derive a controller program from the system graph and the win-
ning conditions?



Chapter 1

Omega-Automata: Introduction

1.1 Terminology

Σ denotes a finite alphabet.
B = {0, 1} is the Boolean alphabet.
a, b, c, . . . stand for letters of an alphabet.
Σ∗ is the set of finite words over Σ.
u, v, w, . . . stand for finite words.
� is the empty word.
Σ+ = Σ∗ \ {�} is the set of non-empty words over Σ.
α, β, γ, . . . denote ω-words or infinite words where an ω-word

over Σ is a sequence α = α(0)α(1) . . . with α(i) ∈ Σ for all i ∈ N.
Σω is the set of infinite words over Σ.
Σ∞ = Σ∗ ∪ Σω

U, V, W, . . . denote sets of finite words (∗-languages) ⊆ Σ∗.
K, L, M, . . . denote sets of infinite words (ω-languages) ⊆ Σω.

We write u · v or simply uv for the concatenation of the words u and v. Similarly, the
concatenation of the word u and the ω-word α is the ω-word uα.

The concatenation of two languages is defined likewise:

U · V = {uv | u ∈ U, v ∈ V }
U · L = {uα | u ∈ U,α ∈ L}

We consider three different transitions from a language U ⊆ Σ∗ to an ω-language, namely to
U · Σω, Uω, and limU .

1. U · Σω := {α ∈ Σω | α = uβ with u ∈ U,β ∈ Σω}
Visualization:

α

∈ U

arbitrary
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Example 1.1. Let U1 = 0110∗ + (00)+. We obtain

U1 · Σω = {α ∈ Σω | α starts with 00 or 011}

�

2. Uω := {α ∈ Σω | α = u0u1u2 . . . with ui ∈ U}
Visualization:

∈ U
∈ U ∈ U

∈ U

α

Notice that Uω = (U \ {�})ω

Example 1.2. Let Σ = B, U is given by the regular expression

0110∗ + 00

Then Uω contains the word
α = 0001100110000000 . . .

Another word in Uω

α = 01100110001100001 . . .

�

3. lim U (or �U) := {α ∈ Σω | there exist infinitely many i with α(0) . . . α(i) ∈ U}.
The expression “there exist infinitely many i with α(0) . . . α(i) ∈ U” can also be written
in short as “∃ωi α[0, i] ∈ U”, where α[i, j] = α(i) . . . α(j).

Visualization:

α

∈ U

Example 1.3. Claim: limU1 contains just the two ω-words 0110000 . . . (in short 0110ω) and
0000000 . . . (in short 0ω).

The word 0110ω is an element of limU1, since 011, 0110, 011000, · · · ∈ U1. The word 0ω is
an element of lim U1, since 00, 0000, 000000, · · · ∈ U1.

Now, let α ∈ limU1, i.e. there exist infinitely many α-prefixes in U1. Now look for the
first α-prefix v in U1.

Case 1: v = 011. Then all longer prefixes in U1 have to be of the form 0110∗, thus α = 0110ω.

Case 2: v = 00. Then every extension of v in U1 has to be of the form (00)∗, thus α = 0ω.

�
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1.2 Büchi Automata

Definition 1.4. A Büchi automaton (to put it more precisely, a finite Büchi automaton) is
of the form

A = (Q,Σ, q0, δ or Δ, F )

with a finite set of states Q, input alphabet Σ, initial state q0 ∈ Q, a deterministic (and hence
complete) transition function δ : Q × Σ → Q or a transition relation Δ ⊆ Q × Σ × Q, and a
set of final states F . In the case of δ we have a deterministic Büchi automaton, in the case of
Δ a nondeterministic Büchi automaton.

Definition 1.5. (Run of a Büchi Automaton)

1. Let A = (Q,Σ, q0, Δ, F ) be a nondeterministic Büchi automaton.

A run of A on α is a sequence of states ρ = ρ(0)ρ(1) · · · with ρ(0) = q0 and (ρ(i),α(i), ρ(i+
1)) ∈ Δ for i ≥ 0.

2. Let A = (Q,Σ, q0, δ, F ) be a deterministic Büchi automaton. As it is usual, we expand
δ to δ∗ : Q × Σ∗ → Q by adding δ∗(q, �) = q and δ∗(q, aw) = δ∗(δ(q, a), w).

The unambiguous run of A on α is the sequence of states ρ with ρ(0) = q0, ρ(1) =
δ(q0, α(0)), ρ(2) = δ∗(q0, α(0)α(1)), in general ρ(i) = δ∗(q0, α(0) . . . α(i − 1)).

Deterministic Büchi automata can be seen as special cases of nondeterministic ones where
(p, a, q) ∈ Δ ⇔ δ(p, a) = q. To simplify our notation, we just write A = (Q,Σ, q0, Δ, F ) for
a Büchi automaton if we don’t care whether it is deterministic or not, and just speak of a
Büchi automaton in this case.

Example 1.6. Given the following automaton A0:

q0

q2

q4a,b
q1

q3

a,b
a

a

a

a

b

b

b

with F = {q1, q3} and the ω-word α = abbaabababa . . . , some of the possible runs of A0 on α
are:

a b b a a b a b a b . . .
q0 q0 q0 q0 q0 q0 q0 q2 q3 q2 q3 . . .
q0 q0 q0 q0 q1 q1 q4 q4 q4 q4 q4 . . .
q0 q0 q0 q0 q0 q2 q3 q2 q3 q2 q3 . . .

�

Definition 1.7. Let A = (Q,Σ, q0, Δ, F ) be a Büchi automaton. We say, that

A accepts α ⇔ ex. a run ρ of A on α with ∃ωi ρ(i) ∈ F .

Notice, that, for a deterministic Büchi automaton, the unambiguous run ρ has to fulfill
this condition.
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Definition 1.8. Let A = (Q,Σ, q0, Δ, F ) be a Büchi automaton. Then

L(A) := {α ∈ Σω | A accepts α}

is the ω-language recognized by A. An ω-language L ⊆ Σω is Büchi recognizable (deter-
ministically Büchi recognizable), if a corresponding Büchi automaton (deterministic Büchi
automaton) A with L = L(A) exists.

Example 1.9. Let A0 be the nondeterministic Büchi automaton over Σ = {a, b} as defined
in example 1.6.

L(A0) = {α ∈ Σω | from some point in α onwards, there is only the letter a
or the sequence ab }.

�

1.3 Elementary Constructions of Omega-Automata

We will now, for the case of U ⊆ Σ∗ being regular, specify ω-automata for the ω-languages
Uω and limU .

Theorem 1.10. U ⊆ Σ∗ is regular ⇒ a) Uω is Büchi recognizable
b) lim U is deterministically Büchi recognizable

Proof

a) Consider an NFA A = (Q,Σ, q0, Δ, F ) that recognizes U .

Idea: Instead of a transition to F , allow a return to q0 and declare q0 as a final state.
But there will be a problem with this idea if a return to q0 is already allowed in the
original NFA.

q0

Fb

c

a

Preparation: Transform A into a standardized NFA A� that has no transitions to the
initial state.

Construction: Introduce a new initial state q�0 and add a transition (q�0, a, q) for every
transition (q0, a, q). The final states remain untouched. But if q0 is a final state, add q�0
to F .

q0 q�0 q0

a

bb

a

b

a

The construction of the Büchi automaton for Uω for a given standardized NFA A =
(Q,Σ, q0, Δ, F ) is done in two steps:
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• For every q� ∈ F replace every transition (q, a, q�) with a new transition (q, a, q0).

• Fix the set of final states of the Büchi automaton to {q0}.

We thereby obtain the Büchi automaton B. The automaton B accepts α ⇔ (+) there
exists a run of B on α that enters q0 infinitely often, e.g. after the segments u0, u1, . . . .
According to the construction, ui ∈ U holds and therefore α ∈ Uω.

Conversely, let α ∈ Uω, α = u0u1u2 . . . with ui ∈ U . Then A : q0
ui−→ F holds and

according to the construction B : q0
ui−→ q0. Thus there exists a run that fits (+), and

consequently B accepts the ω-word α.

b) Let U be recognized by the DFA A = (Q,Σ, q0, δ, F ) . Use A as a deterministic Büchi
automaton, now called B.

B accepts α
Def⇐⇒ The unambiguous run of B on α enters F infinitely often.
⇐⇒ ∃ωi : A reaches a state in F after α(0) . . . α(i)
⇐⇒ ∃ωi : α(0) . . . α(i) ∈ U (according to the def. of A)
⇐⇒ α ∈ lim U

�

Note that the converse of Theorem 1.10(b) also holds. Every ω-language recognized by a
deterministic Büchi automaton is of the form limU for a regular language U .

Theorem 1.11. There is an ω-language which is Büchi recognizable but not recognizable by
any deterministic Büchi automaton.

Proof Consider the language

L = {α ∈ Bω | from some point in α onwards only zeros},

thus L = (0 + 1)∗0ω. A matching automaton could look like this:

0,1

0

0

Assume: L is recognized by det. Büchi Automata A = (Q,Σ, q0, δ, F ) . Then the following
holds:

A on 0ω infinitely often enters final states, after 0n1 for the first time. A on 0n110ω infinitely
often enters final states, before the last 1 for the first time, and after processing 0n110n2 a
second time. A on 0n110n210ω infinitely often enters final states, before the last 1 for the first
time, before the second 1 a second time, and a third time after processing 0n110n210n3 .

Continuing this we obtain an ω-word 0n110n210n310n4 . . . which causes A to enter final
states after each 0-block. A therefore accepts this ω-word, although it contains infinitely
many 1s. Contradiction. �
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1.4 Characterization of Büchi Recognizable Omega-Languages

Theorem 1.12. (Characterization of the Büchi recognizable ω-languages) L ⊆ Σω is Büchi
recognizable ⇔ L has a description of the form of

L =
n�

i=0

Ui · V ω
i with U1, V1, . . . , Un, Vn ⊆ Σ∗ regular.

Proof

⇐ It suffices to show:

1. U ⊆ Σ∗ regular ⇒ Uω Büchi recognizable.

2. U ⊆ Σ∗ regular, K ⊆ Σω Büchi recognizable ⇒ U · K Büchi recognizable.

3. L1, L2 ⊆ Σω Büchi recognizable ⇒ L1 ∪ L2 Büchi recognizable.

For 1: Use Theorem 1.10(a).

For 2: Let A = (Q,Σ, q0, Δ, F ) be an NFA, which recognizes the language U , and let
A� = (Q�, Σ, q�0, Δ

�, F �) be a Büchi automaton, which recognizes the language K. Now,
construct a Büchi automaton B = (Q�Q�, Σ, q0, ΔB, F �) for U ·K, where ΔB contains,
in addition to the transitions of Δ and Δ�, the following:

• for every transition (p, a, q) with q ∈ F the transition (p, a, q �0)

• if q0 ∈ F , for every transition (q�0, a, q�) ∈ Δ� the transition (q0, a, q�).

F’

b
a

F

a
b

b

A A
�

q�0q0

For 3: Merge the Büchi automata A = (Q,Σ, q0, Δ, F ) and A� = (Q�, Σ, q�0, Δ
�, F �) into a

single automaton B = (Q∪̇Q�, Σ, q0, ΔB, F ), where ΔB contains all transitions of Δ,Δ�,
as well as (q0, a, q�) for (q�0, a, q�) ∈ Δ�. In doing so, we assume w.l.o.g. that there are
no transitions to q0 in A.

⇒ Let A = (Q,Σ, q0, Δ, F ) be a Büchi automaton. Set Aqq� = (Q,Σ, q, Δ, {q�}). Let Uqq� ⊆
Σ∗ be the language that is recognized by the NFA Aqq� . Notice that, consequently, Uqq�

is regular.

A accepts α ⇔ ex. q ∈ F which makes a segmentation of α into α = u0u1u2 . . . , with
u0 ∈ Uq0q, u1 ∈ Uqq, u2 ∈ Uqq, . . . , possible. Therefore the following holds.

A accepts α ⇔ ex. q ∈ F with α ∈ Uq0q · Uω
qq ⇔ α ∈

�

q∈F

Uq0q · Uω
qq

�
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Definition 1.13. An ω-regular expressions is of the form r1s
ω
1 + · · · + rnsω

n with standard
regular expressions r1, s1, . . . , rn, sn.

The meaning (semantics) of those expressions is defined in a manner analogous to standard
regular expressions. We of course stipulate that for an expression s, which defines the language
U ⊆ Σ∗, the expression sω defines the ω-language Uω.

Example 1.14. Büchi automaton: Defining ω-regular expression:

q0

q2

a,b
q1

q3

a

a

a

a

b

(a + b)∗aω + (a + b)∗(ab)ω

�

From Theorem 1.12 we obtain:

Corollary 1.15. An ω-language is Büchi recognizable iff it can be defined by an ω-regular
expression.

Definition 1.16. An ω-language L is called regular if it is definable by an ω-regular expression
(or if it is nondeterministically Büchi recognizable).

Remark 1.17.

a) Every nonempty regular ω-language contains an ω-word which is eventually periodic (in
the form uvvvvv . . . , with u, v finite).

b) A set {α} with exactly one element is regular ⇔ α eventually periodic.

Proof

a) Let L =
�n

i=1 UiV
ω
i be regular and nonempty. Then, for a suitable i, Ui · V ω

i �= ∅ holds.
Therefore there are words u ∈ Ui, v ∈ Vi with v �= �. So uvvv . . . ∈ L is eventually
periodic.

b) “⇒” is clear because of a)
“⇐” Let α = uvvvv . . . . Then {α} = {u} · {v}ω holds, where {u} and {v} are regular.

�

Theorem 1.18. (Nonemptiness Problem) The nonemptiness Problem for Büchi automata
(with state set Q and transition relation Δ) is solvable in time O(|Q| + |Δ|).
Proof Let A = (Q,Σ, q0, Δ, F ) be a Büchi automaton. Define E = {(p, q) ∈ Q × Q | ∃a ∈
Σ : (p, a, q) ∈ Δ} and call G := (Q,E) the transition graph of A.

Therefore L(A) �= ∅ iff in the transition graph there is a path from q0 to a final state q,
from which there is a path back to q.

This is the case iff in the transition graph of A there is a strongly connected component
(SCC) C such that C contains a final state and is reachable by a path from q0.
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Nonemptiness test

1. Apply depth-first search from q0 in order to determine the set Q0 of states reachable
from q0.

2. Apply Tarjan’s SCC-algorithm to list all SCC’s over Q0, and check each SCC for the
containment of a final state.

3. If such an SCC is encountered, answer L(A) �= ∅, otherwise L(A) = ∅.

Items 1 and 2 require both time O(|Q| + |Δ|). (For details turn to Cormen, Leiserson,
Rivest: Introduction to Algorithms.) �

1.5 Closure Properties of Büchi Recognizable Omega-Languages

We showed (in the exercises) that the union L1 ∪ L2 of two Büchi recognizable ω-languages
L1, L2 is in turn Büchi recognizable.

We will now verify closure under intersection:

Theorem 1.19. The intersection L1 ∩ L2 of two Büchi recognizable ω-languages L1, L2 is
again Büchi recognizable.

Proof Assume Li is recognized by the Büchi automaton Ai = (Qi, Σ, qi0, Δi, Fi) for i = 1, 2.

First Idea: Form the product automaton

(Q1 × Q2, Σ, (q10, q20),Δ, F1 × F2)

where ((p, q), a, (p�, q�)) ∈ Δ iff (p, a, p�) ∈ Δ1 and (q, a, q�) ∈ Δ2.

Problem: We cannot assume that the final states in the two runs of A1, A2 are visited
simultaneously

Solution: Repeatedly do the following steps

1. Wait for a final state p ∈ F1 in the first component.

2. When a p ∈ F1 is encountered, wait for a final state q ∈ F2 in the second component.

3. When a q ∈ F2 is encountered, signal “cycle completed“ and go back to 1.

Hence work with the state space Q1 × Q2 × {1, 2, 3}.
Form the refined product automaton

A = (Q1 × Q2 × {1, 2, 3}, Σ, (q10, q20, 1),Δ�, Q1 × Q2 × 3)

with the following transitions in Δ�, in each case assuming (p, a, p�) ∈ Δ1 and (q, a, q�) ∈ Δ2:

• ((p, q, 1), a, (p�, q�, 1)) if p� �∈ F1

• ((p, q, 1), a, (p�, q�, 2)) if p� ∈ F1

• ((p, q, 2), a, (p�, q�, 2)) if q� �∈ F2
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• ((p, q, 2), a, (p�, q�, 3)) if q� ∈ F2

• ((p, q, 3), a, (p�, q�, 1)

Then a run of A simulates two runs ρ1 of A1 and ρ2 of A2: It has infinitely often 3 in the
third component iff ρ1 visits infinitely often F1 and ρ2 infinitely often F2.

�

Note that up to now we do not know a general construction for the complement of a Büchi
recognizable language.

1.6 Generalized Büchi Automata

Definition 1.20. (Generalized Büchi Automaton) A generalized Büchi automaton is of the
form A = (Q,Σ, q0, Δ, F1, . . . , Fk) with final state sets F1, . . . , Fk ⊆ Q. A run is successful if
the automaton visits each of the sets Fi (i.e. the automaton enters a state in each Fi) infinitely
often.

Remark 1.21. For any generalized Büchi automaton one can construct an equivalent Büchi
automaton.

We will first give a proof idea before dealing with the exact construction: Work with the state
set Q×{1, . . . , k, k + 1}. For i, . . . , k a state (q, i) means “wait for visit to Fi”. After visiting
Fk proceed to i = k + 1 (“cycle completed”) and go back to i = 1. Consequently, declare
Q × {k + 1} as the set of final states.

Proof (Detailed construction)

Given a generalized Büchi automaton A = (Q,Σ, q0, Δ, F1, . . . , Fk), construct the Büchi
automaton

A
� = (Q × {1, . . . , k + 1}, Σ, (q0, 1),Δ�, Q × {k + 1})

with the following transitions in Δ� (assuming that (p, a, q) ∈ Δ):

• ((p, i), a, (q, i)), if i ≤ k and q �∈ Fi

• ((p, i), a, (q, i + 1)), if i ≤ k and q ∈ Fi

• ((p, k + 1), a, (q, 1))

�

1.7 Exercises

Exercise 1.1. Specify Büchi automata, which recognize the following ω-languages over Σ =
{a, b, c}:

(a) The set of α ∈ Σω, in which abc appears as an infix at least once.

(b) The set of α ∈ Σω, in which abc appears as an infix infinitely often.
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(c) The set of α ∈ Σω, in which abc appears as an infix only finitely often.

Exercise 1.2. Find ω-regular expressions, which define the ω-languages in Exercise 1.1.

Exercise 1.3. Let the NFA A recognize the language U ⊆ Σ∗. Verify both inclusions of the
equation L(A) = lim U .

Exercise 1.4. Prove or disprove the following equations (for U, V ⊆ Σ+):

(a) (U ∪ V )ω = Uω ∪ V ω

(b) lim(U ∪ V ) = limU ∪ limV

(c) Uω = lim(U+)

(d) lim(U · V ) = U · V ω

Exercise 1.5. Consider the ω-language L over Σ = {a, b} which is defined by the ω-regular
expression (a + b)∗aω + (a + b)∗(ab)ω. (see Example 1.14). Show that L cannot be described
in the form U · V ω, with U, V ⊆ Σ∗ regular (therefore one needs the union operation in order
to generate all Büchi recognizable ω-languages).

Hint: Assume that L is of the form U · V ω and consider the words in V .

Exercise 1.6. Let L1, L2 be the ω-languages recognized by Büchi automata A1 = (Q1, Σ, q0, Δ1, F1)
and A2 = (Q2, Σ, q0, Δ2, F2), respectively. Show (using some necessary assumptions on the
structure of A1 and A2) that the language L1 ∪ L2 is again Büchi recognizable by

(a) constructing a Büchi automaton B1 with state set Q1 ∪ Q2, but without �-transitions,
that accepts L1 ∪ L2.

(b) constructing a product Büchi automaton B2 with state set Q1 × Q2 accepting L1 ∪ L2.
Show in particular how to combine the Büchi acceptance conditions of both automata A1

and A2 into a single one for B2.

Exercise 1.7. Given the following Büchi automata,

p1

b
cA1 : q0

1

2

q1

1,2,3

q2

1,2,3

A2 : p0

a

b,c

p2

b

specify ω-regular expressions which define the ω-languages that are recognized by A1 and A2.

Exercise 1.8. Investigate the following question (whose answer is yet to be found): Is there
an algorithm that, for a given Büchi automata A over the alphabet Σ, decides whether L(A)
is of the form Uω for a regular language U ⊆ Σ∗?



Chapter 2

Temporal Logic and Model
Checking

In this chapter we are going to discuss an automata theoretic approach to the model checking
problem. The theory of Büchi automata, which we treated in the last chapter, will serve us
in two ways:

On the one hand, Büchi automata obviously represent a model for systems with infinite
runs. Such systems can be modeled by Büchi automata which have accepting runs only,
i.e. every state is a final state.

On the other hand, Büchi automata can be used to specify properties and constraints for
infinite state sequences, since they can be encoded by ω-words. For our purposes we need a
logical language which can specify systems and be translated into Büchi automata as well.

Hence the model checking problem can be reduced to comparing two Büchi automata.
This is where we will be using methods from the previous chapter.

2.1 The Model-Checking Problem and Sequence Properties

Starting the technical treatment, we will first recall the informal formulation of the model-
checking problem from the introduction:

Given a system Sys and a specification Spec on the runs of the system, decide
whether Sys satisfies Spec.

There was an early example for this problem in the first lecture:

Example 2.1. Sys = MUX (Mutual exclusion) protocol, modeled by a transition system
over the state-space B5.

Process 1: Repeat

00: non-critical section 1

01: wait unless turn = 0

10: critical section 1

11: turn := 1

Process 2: Repeat

00: non-critical section 2
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01: wait unless turn = 1

10: critical section 2

11: turn := 0

A state is a bit-vector (line no. of process 1, line no. of process 2, value of turn). The
system starts with the initial state (00000).

Spec = “a state (1010b) is never reached”, and “always when a state (01bcd) is reached,
then later a state (10b�c�d�) is reached” (similarly for states (bc01d), (b�c�10d�)). �

This example is going to be used to introduce transition systems and system specification.
After that, we will develop the general approach as follows:

1. Kripke structures as system models: Kripke structures provide a mathematical
framework for transition systems. Their states give information about the properties of
a system.

2. Simple specifications: We are going to model a simple example using Kripke struc-
tures and common language. Doing so we will see the need for a formal system specifi-
cation language.

3. Linear-time temporal logic LTL is the logic we choose to set system constraints. It
will enable us to express grammatical operators of common language.

4. The automata theoretic approach to model-checking: Having introduced the
necessary tools we will sketch a way to solve the model-checking problem using (Büchi)
automata theory.

5. Translation of temporal logic formulas to Büchi automata: At this stage we
will lack just one method: bridging the gap between LTL and Büchi automata.

2.2 Kripke Structures

Kripke structures are a general framework for the case where state properties p1, . . . , pn are
considered.

Definition 2.2. A Kripke structure over p1, . . . , pn has the form M = (S, R, λ) with

• a finite set S of “states”

• a “transition relation” R ⊆ S × S

• a “labeling function” λ : S → 2{p1,...,pn}, associating with s ∈ S the set of those pi which
are assumed true in s

Usually we write a value λ(s) as a bit vector (b1, . . . , bn) with bi = 1 iff pi ∈ λ(s).
In a pointed Kripke structure, a state s is declared as initial; we write (M, s). All runs

start in s.

Example 2.3. (MUX Protocol) State space: S = B5. We use the state properties

• p1, p2 for “being in wait instruction before the critical section of P1, or P2 respectively”,
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• p3, p4 for “being in critical section of P1, respectively P2”.

The transition relation R is as defined by the transitions of the protocol. Example value of
the label function: λ(01101) = {p1, p4} [= (10010)]. �

We have another example which we will use again and again to familiarize ourselves with the
concept:

Example 2.4. (A toy example) Consider a system over two properties p1 and p2.

�
1
0

� �
0
0

�

�
1
1

�

�
0
1

�

A path through a pointed Kripke structure (M, s) with M = (S, R, λ) is a sequence s0, s1, s2, . . .
where s0 = s and (si, si+1) ∈ R for i ≥ 0.

The corresponding label sequence is the ω-word over Bn: λ(s0)λ(s1)λ(s2) . . ., for instance

�
1

1

��
1

0

��
0

1

��
1

0

��
0

0

��
0

0

�
· · ·

over the alphabet B2 =
��

0
0

�
,
�
1
0

�
,
�
0
1

�
,
�
1
1

��
.

We hereby obtain an ω-language that contains the corresponding label sequences of all
possible runs of the Kripke structure. �

Now that we have introduced Kripke structures, we will state the model-checking problem
more precisely:

Given a pointed Kripke structure over p1, . . . , pn and a condition φ on ω-words
over Bn, does every label sequence of (M, s) satisfy φ?

For the MUX protocol consider the following conditions φ:

• “Never p3, p4 are simultaneously true” which means for any label sequence: “there is
no letter (b1, b2, 1, 1)”.

• “Always when p1 is true then sometime later p3 is true” which means for any label
sequence “when a letter (1, b2, b3, b4) occurs, later on a letter (b1, b2, 1, b4) occurs”.

Basic sequence properties We consider state properties p1, p2. Label sequences are then
ω-words over the alphabet B2 =

��
0
0

�
,
�
0
1

�
,
�
1
0

�
,
�
1
1

��
. We consider the following properties of

label sequences over p1 and p2:

Guaranty property: “Sometime p1 becomes true.”

Safety property: “Always p1 is true.”
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Periodicity property: “Initially p1 is true, and p1 is true precisely at every third moment.”
Example sequence:

�
1
0

� �
0
0

� �
0
1

� �
1
1

� �
0
1

� �
0
0

� �
1
0

�
· · ·

Obligation property: “Sometime p1 is true but p2 is never true.”

Recurrence property: “Again and again, p1 is true.”

Request-Response property: “Always when p1 is true, p2 will be true sometime later.”

Until property: “Always when p1 is true, sometime later p1 will be true again and in the
meantime p2 is always true.”

Fairness property: “If p1 is true again and again, then so is p2.”

We reformulate these conditions by using the following temporal operators:

• Xp for “p is true next time”,

• Fp for “eventually (sometime, including present) p is true”,

• Gp for “always (from now onwards) p is true”,

• p1Up2 for “p1 is true until eventually p2 is true”.

Guaranty: “Sometime p1 becomes true.”

Fp1

Safety: “Always p1 is true.”

Gp1

Periodicity: “Initially p1 is true, and p1 is true at precisely every third moment.”

p1 ∧ X¬p1 ∧ XX¬p1 ∧ G(p1 ↔ XXXp1)

Obligation: “Sometime p1 is true but p2 is never true.”

Fp1 ∧ ¬Fp2� �� �
≡G¬p2

Recurrence: “Again and again, p1 is true.”

GFp1

Request-Response: “Always when p1 is true, p2 will be true sometime later.”

G(p1 → XFp2)

Until Condition: “Always when p1 is true, sometime later p1 will be true again and in the
meantime p2 is always true.”

G(p1 → X(p2Up1))
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Fairness: “If p1 is true again and again, then so is p2.”

GFp1 → GFp2

Example 2.5. (Translation of LTL-formulas to Büchi automata) By intuition one can con-
struct corresponding Büchi automata for LTL-formula. These automata accept label se-
quences iff the corresponding LTL-formula are satisfied by them.

Fp1 : GP1 :

(0

0)

(1

0)

∗

(1

∗
)

p1 ∧ X¬p1 ∧ XX¬p1 ∧ G(p1 ↔ XXXp1) : Fp1 ∧ ¬Fp2 :

(1

∗
) (0

∗
)

(0

∗
)

(0

0)

(1

0)
(∗0)

GFp1 : G(p1 → XFp2) :

(0

∗
)

(1

∗
)

(1

∗
)

(0

∗
)

(0

∗
)

(1

∗
)

(∗0)
(1

1)

(0

1)

(1

1)

(∗0)

(0

1)

GFp1 → GFp2 :
∗

(0

∗
)

(0

∗
)

∗

∗

(∗0)
(∗1)

(∗1)

(∗0)

We leave G(p1 → X(p2Up1)) as an exercise. �

2.3 Linear-Time Temporal Logic LTL

We will now formally introduce the linear-time temporal logic.
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Definition 2.6. (Syntax of LTL)
The LTL-formulas over atomic propositions p1, . . . , pn are inductively defined as follows:

• pi is a LTL-formula.

• If ϕ, ψ are LTL-formulas, then so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ.

• If ϕ, ψ are LTL-formulas, then so are Xϕ, Fϕ, Gϕ, ϕUψ.

Example 2.7. For atomic propositions p1, p2 we consider

• GFp1: p1 is true again and again.

• XX(p1 → Fp2): if the p1 is true in the moment after the next, then p2 will eventually
be true afterwards.

• F(p1 ∧X(¬p2Up1)): Sometime p1 will be true and from the next moment on p2 will not
be true until p1 is true.

�

By convention we read “X” as “next”, “F” as “eventually”, “G” as “always”, and “U” as
“until”.

LTL-formulas over p1, . . . , pn are interpreted in ω-words α over Bn.

Notation If α = α(0)α(1) . . . ∈ (Bn)ω, then

1. αi stands for α(i)α(i + 1) . . ., so α = α0.

2. (α(i))j is the j-th component of α(i).

Definition 2.8. (Semantics of LTL)
Define the satisfaction relation αi |= ϕ inductively over the construction of ϕ as follows:

• αi |= pj iff (α(i))j = 1.

• αi |= ¬ϕ iff not αi |= ϕ.

• similarly for ∨,∧,→.

• αi |= Xϕ iff αi+1 |= ϕ.

• αi |= Fϕ iff for some j ≥ i: αj |= ϕ.

• αi |= Gϕ iff for all j ≥ i: αj |= ϕ.

• αi |= ϕ U ψ iff for some j ≥ i, αj |= ψ and for all k = i, . . . j − 1: αk |= ϕ.

Definition 2.9. An ω-language L ⊆ ({0, 1}n)ω is LTL-definable if there is a LTL-formula φ
with propositional variables p1, . . . , pn such that L = {α ∈ ({0, 1}n)ω | α |= φ}.

Definition 2.10. (Satisfaction of LTL-Formulas by Kripke Structures)
A pointed Kripke structure (M, s) satisfies a LTL-formula ψ ((M, s) |= ψ) if all words

α = λ(q0)λ(q1) . . ., where q0, q1, . . . is a path through M with q0 = s, satisfy ψ.
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Example 2.11. We consider formulas over p1, p2.

1. α |= GFp1

iff for all j ≥ 0: αj |= Fp1

iff for all j ≥ 0 exists k ≥ j: αk |= p1

iff for all j ≥ 0 exists k ≥ j: (α(k))1 = 1

iff in α, infinitely often 1 appears in the first component.

2. α |= XX(p2 → Fp1)

iff α2 |= p2 → Fp1

iff if (α(2))2 = 1 then α2 |= Fp1

iff if (α(2))2 = 1 then ∃j ≥ 2: (α(j))1 = 1

iff “if second component of α(2) is 1, then the first component of some α(j) with
j ≥ 2 is 1”.

For example, this is true in: α =
�
1
0

��
0
0

��
1
1

��
0
1

��
1
0

��
0
1

�
· · ·

3. α |= F(p1 ∧ X(¬p2Up1))

iff for some j ≥ 0: αj |= p1 and αj+1 |= ¬p2Up1

iff for some j ≥ 0: αj |= p1 and there is a j � ≥ j + 1 with αj� |= p1 such that for
k = j + 1, . . . , j � − 1: αk |= ¬p2

iff for some j and j � > j, α(j) and α(j �) have 1 in first component such that for k
strictly between j and j �, α(k) has 0 in second component

iff α has two letters
�
1
∗

�
such that in between only letters

�
∗
0

�
occur.

�

We have defined the semantics of LTL-formulas. Now we want to be able to determine whether
a given sequence satisfies a formula.

Aim: Evaluation of a LTL-formula ϕ over a sequence α ∈ (Bn)ω.

Idea: Consider

• all subformulas ψ of ϕ in increasing complexity,

• the end sequences αi for all i ≥ 0.

This gives an infinite two-dimensional array of truth values: At array position (ψ, i) write 1
iff αi |= ψ. Then: α |= ϕ iff the value at position (ϕ, 0) is 1.

Example 2.12. Let ϕ = F(¬p1 ∧ X(¬p2Up1)). The corresponding array of truth values is:
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α =
�
1
0

� �
0
1

� �
1
1

� �
0
0

� �
1
0

� �
0
1

�
· · ·

¬p1 0 1 0 1 0 1 . . .

¬p2 1 0 0 1 1 0 . . .

¬p2Up1 1 0 1 1 1 0 . . .

X(¬p2Up1) 0 1 1 1 0 . . . .

¬p1 ∧ X(¬p2Up1) 0 1 0 1 0 . . . .

F(¬p1 ∧ X(¬p2Up1))� �� �
φ

1 1 1 1 . . . . .

�

Definition 2.13. Given an ω-word α over Bn and a LTL-formula ϕ over p1, . . . , pn, let m be
the number of distinct subformulas of ϕ. The array of truth values for all subformulas is an
ω-word β ∈ Bn+m, called the ϕ-expansion of α.

2.4 LTL-Model-Checking Problem

We have now met the technical requirements to reformulate the model-checking problem,
using Kripke structures and LTL:

A Kripke structure (M, s) is said to satisfy ϕ if each label sequence through (M, s)
satisfies ϕ.

To write that more formally:

Definition 2.14. (LTL-Model-Checking Problem)
Given a pointed Kripke structure (M, s) and a LTL-formula ϕ (both over p1, . . . , pn),

decide whether (M, s) satisfies ϕ.

Example 2.15. Consider GFp1, XX(p2 → Fp1), F(p1∧X(¬p2Up1)), and the following Kripke
structure:

�
1
0

� �
0
0

�

�
1
1

�

�
0
1

�

We see that GFp1 fails, XX(p2 → Fp1) is true, and F(p1 ∧ X(¬p2Up1)) fails. �

How do we go about solving a given LTL model-checking problem? In the above example the
answer was quite obvious. But for real world applications we need to do that algorithmically.
This is the point where we will use Büchi automata for the following idea for LTL model-
checking:
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Check for the negative answer: Is there a label sequence through (M, s) which
does not satisfy ϕ?

Four steps are needed to implement this idea:

1. Define the ω-language of all label sequences through (M, s) by a Büchi automaton
AM,s.

2. Define the ω-language of all label sequences, which do not satisfy ϕ by a Büchi automa-
ton A¬ϕ.

3. Construct a Büchi automaton B which recognizes L(AM,s) ∩ L(A¬ϕ), i.e. accepts all
label sequences through (M, s) which violate ϕ.

4. Check B for nonemptiness; if L(B) �= ∅ then answer “(M, s) does not satisfy ϕ”, other-
wise “(M, s) satisfies ϕ”.

We already know algorithms for items 3. and 4. Items 1. and 2. still need to be taken care
of.

From Kripke structures to Büchi automata This problem is straightforward and the
solution is rather obvious: Given a pointed Kripke structure (M, s) with M = (S, R, λ),
λ : S → Bn, construct a Büchi automaton AM,s = (S, Bn, s,Δ, S) with

(s, (b1 . . . bn), s�) ∈ Δ iff (s, s�) ∈ R and λ(s) = (b1 . . . bn).

So a transition gets the label of the source state.

Example 2.16. Consider the Kripke structure from Example 2.15:

�
1
0

� �
0
0

�
(1

0)

(1

0)

(0

0)

�
1
1

�

(1

1)

(1

1)�
0
1

�

(0

1)

�

The second item is not that easy to solve. We are going to dedicate a whole section to this
problem.

2.5 From LTL to Büchi Automata

Idea: For a given LTL-formula ϕ construct a Büchi automaton, which, on input α, nondeter-
ministically guesses the ϕ-expansion β of α and, while running, simultaneously checks that
this guess is correct.
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Consequently, a guess of β is correct, if the automaton accepts and the automaton will
also ensure that the input α satisfies the corresponding LTL-formula by checking the entry
at position (ϕ, 0) of β. Recall that α |= ϕ iff β(ϕ, 0) = 1.

Therefore the automaton states are the bit vectors which are the “letters” (∈ Bn+m) of β.
To simplify the inductive structure of formulas, we only consider the temporal operators

X and U. Eliminate F and G by the rules:
Fϕ is equivalent to ttUϕ
Gϕ is equivalent to ¬F¬ϕ

with tt ≡ p1 ∨ ¬p1.

Theorem 2.17. For a LTL-formula ϕ over p1, . . . , pn let ϕ1, . . . , ϕn+m be the list of all subfor-
mulas of ϕ in order of increasing complexity (such that ϕ1 = p1, . . . , ϕn = pn, . . . , ϕn+m = ϕ).
Then there is a generalized Büchi automaton Aϕ with state-set {q0} ∪ Bn+m, which is equiv-
alent to ϕ (in the sense that α |= ϕ iff Aϕ accepts α).

In order to check the consistency (i.e. the correctness) of the ϕ-expansion that the automaton
guesses, we need to come up with certain compatibility conditions. These are to assure that a
state (that is, a letter of β) is consistent in itself and also consistent with the preceding state.
Consider the following example:

Example 2.18. (Compatibility conditions) Let α ∈ (Bn)ω, ϕ1, . . . , ϕn the list of subformulas
of ϕ, and let β be the ϕ-expansion of α.

Illustration for ϕ = p1 ∨ X(¬p2Up1):

p1 0 0 1 0 1 0 0 1 0 0 0 . . .

p2 0 0 0 1 0 0 0 1 0 0 0 . . .

¬p2 1 1 1 0 1 1 1 0 1 1 1 . . .

¬p2Up1 1 1 1 0 1 1 1 1 0 0 0 . . .

X(¬p2Up1) 1 1 0 1 1 1 1 0 0 0 0 . . .

p1 ∨ X(¬p2Up1) 1 1 1 1 1 1 1 1 0 0 0 . . .

Observe that the third line has to be exactly the inverse of the second line and the fourth
line is equal to the fifth line, shifted to the right. The first and fifth line make up the input
for the ∨-function which is the sixth line. �

Under the assumptions of the previous example, the following holds:

ϕj = ¬ϕj1 ⇒ (β(i))j = 1 iff (β(i))j1 = 0
ϕj = ϕj1 ∧ ϕj2 ⇒ (β(i))j = 1 iff (β(i))j1 = 1 and (β(i))j2 = 1
ϕj = ϕj1 ∨ ϕj2 ⇒ (β(i))j = 1 iff (β(i))j1 = 1 or (β(i))j2 = 1
ϕj = Xϕj1 ⇒ (β(i))j = 1 iff (β(i + 1))j1 = 1
ϕj = ϕj1Uϕj2 ⇒ (β(i))j = 1 iff (β(i))j2 = 1 or

�
(β(i))j1 = 1

and (β(i + 1))j) = 1
�

For the last condition note: ϕUψ ≡ ψ ∨ (ϕ ∧ X(ϕUψ)). To ensure the satisfaction of a
subformula ϕj = ϕj1Uϕj2 we have to add the condition

(∗) there is no k such that for every l ≥ k : (β(l))j = 1 and (β(l))j2 = 0.

The first conditions are local (controllable by comparing successive column vectors of β). The
last condition (∗) is non-local.
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Proposition 2.19. Assume β ∈ Bn+m satisfies all compatibility conditions for the given α.
Then β is uniquely determined and in fact it is the ϕ-expansion of α.

Proof by induction over the subformulas of ϕ:

For each subformula ϕj , the entry of the j-th component of β at position i is the truth
value of ϕj over the sequence αi. The cases of atomic formulas, Boolean connectives, and
X-operator are clear.

For the case of ϕj = ϕj1Uϕj2 : If (β(k))j2 = 1 then for all i ≤ k the entries for (β(i))j are
correct. Recall that ϕUψ ≡ ψ∨ (ϕ∧X(ϕUψ)). So if infinitely many k exist with (β(k))j2 = 1,
the entries (β(i))j are correct for all i. In the remaining case: Consider k with (β(l))j2 = 0
for all l ≥ k. Then show that for all l ≥ k the entry for (β(l))j is 0 (and hence correct).
Otherwise (β(l))j = 1 and (β(l))j2 = 0 for all l ≥ k, which poses a contradiction to (∗).
Recall the definition of (∗): there is no k such that for all l ≥ k: (β(l))j = 1 and (β(l))j2 = 0.

�

Proof of Theorem 2.17 The desired generalized Büchi automaton Aϕ just has to check
those compatibility conditions. It is defined as follows:

State set Q := {q0} ∪ Bn+m, initial state q0.

Transitions (for �b = (b1, . . . , bn) and �c = (c1, . . . , cm)):

q0
�b

(�b �c), where (�b �c) satisfies the Boolean compatibility conditions, and cm = 1
(ϕ should be checked to be true).

(�b �c)
�b�

(�b� �c�), where �b,�c,�b�,�c� satisfy all compatibility conditions except of (∗).

Final state sets For the until-subformula ϕj = ϕj1Uϕj2 the final state-set Fj contains all
states with j-component 0 or j2-component 1. If there is no until-subformula, then
every state is a final state.

This definition ensures that Aϕ accepts α iff for some Aϕ-run ρ ∈ (Bn+m)ω, each Fj is visited
infinitely often (i.e. the j-component = 0 or the corresponding j2-component = 1 infinitely
often).

This means it does not happen that from some time k onwards, the j-component stays 1
and the j2-component stays 0.

Therefore (∗) is guaranteed. Recall (∗): there is no k such that for all l ≥ k: (β(l))j = 1
and (β(l))j2 = 0. Consequence:

Aϕ accepts α

iff the (unique) accepting run β of Aϕ on α is the ϕ-expansion of α, and moreover at time
0 the (n + m)-th component of the state is 1 (signaling ϕn+m = ϕ to be true)

iff α |= ϕ.
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Summary of LTL-Model-Checking Check whether a pointed Kripke structure (M, s)
satisfies the LTL-formula ϕ:

1. Transform the given pointed Kripke structure (M, s) into a Büchi automaton AM,s.

2. Transform the formula ¬ϕ into an equivalent generalized (and then standard) Büchi
automaton A¬ϕ.

3. Construct a Büchi automaton B which recognizes L(AM,s) ∩ L(A¬ϕ), i.e. accepts all
label sequences through (M, s) which violate ϕ.

4. Check B for nonemptiness; if L(B) �= ∅ then answer “(M, s) does not satisfy ϕ”, other-
wise “(M, s) satisfies ϕ”.

Note that items 1., 3., and 4. are all done in polynomial time.

Item 2. needs exponential time in the size of the formula (number of occurring atomic
formulas, connectives, and operators)

Summary: The LTL-model-checking problem “(M, s) |= ϕ?” is solvable in polynomial
time in the size of M and in exponential time in the size of ϕ.

Further questions:

1. Is this exponential complexity avoidable?

2. Given that LTL-formulas are translatable into Büchi automata, what about the con-
verse? (Answer: No)

3. Is there a logic which is equivalent in expressive power to Büchi automata (the logic
S1S over ω-sequences)?

Theorem 2.20. The LTL-model-checking problem LTL-MC “(M, s) |= ϕ?” is NP-hard.

Remark 2.21. One can even show PSPACE-completeness of LTL-MC.

Proof of Theorem 2.20 For the NP-complete problem SAT(3) we show:

SAT(3) ≤P LTL-MC

More precisely: A propositional formula ψ in conjunctive normal form with three literals per
clause can be transformed in polynomial time into a pointed Kripke structure (M, s)ψ and a
LTL-formula ϕψ such that

ψ is satisfiable iff not (M, s)ψ |= ϕψ.

First, let us consider an example of constructing an equivalent LTL-model-checking problem
for a SAT(3) formula.

Example 2.22. ψ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) (satisfiable with the assignment
x1 �→ 1, x2 �→ 0, x3 �→ 0)

Model (M, s)ψ:
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x1

(1

0)

x2

(0

0)

x3

(1

0)

y0

(0

0)

y1

(0

0)

y2

(0

0)

y3

(0

0)

¬x1

(0

1)

¬x2

(1

1)

¬x3

(0

1)

LTL-formula ϕψ(p1, p2) := G¬p1 ∨ G¬p2 �

General construction Given ψ = C1 ∧ . . . ∧ Cn (the Ci are clauses), with Ci = χi1 ∨
χi2 ∨ χi3, where χij is a literal, i.e. either xk or ¬xk, xk ∈ {x1, . . . , xm}.

Define (M, s)ψ over p1, . . . , pn, M = (S, R, λ) with

S = {y0, . . . , ym, x1, . . . xm,¬x1, . . .¬xm}

and R with the edges (yi, xi+1), (yi,¬xi+1), (xi, yi), (¬xi, yi) and (ym, ym). The labeling func-
tion λ : S → Bn is given by

λ(yi) = 0n,

(λ(xi))j = 1 iff xi is literal of Cj , and

(λ(¬xi))j = 1 iff ¬xi is literal of Cj .

The LTL-formula is ϕψ = G¬p1 ∨ . . .G¬pn.

We have to show that ψ is satisfiable iff not (M, s)ψ |= ϕψ. Take the example ψ =
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

x1

(1

0)

x2

(0

0)

x3

(1

0)

y0

(0

0)

y1

(0

0)

y2

(0

0)

y3

(0

0)

¬x1

(0

1)

¬x2

(1

1)

¬x3

(0

1)

An assignment A : {x1, . . . , xm} → B defines a path through M. Therefore

ψ is satisfiable

iff some assignment makes each Ci true

iff some path through M meets a 1 in each component

iff not for all paths there is a component which is constantly 0

iff not (M, s)ψ |= G¬p1 ∨ G¬p2 (= ϕψ). �

The translation from LTL to Büchi automata showed:

Each LTL-definable ω-language is Büchi recognizable.
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We show that Büchi automata are (strictly) more expressive than LTL-formulas:

Theorem 2.23. There are ω-languages which are Büchi recognizable but not LTL-definable.

The general idea for proving this theorem is to show that LTL-formulas cannot describe
“modulo-counting”. As an example language we take L = (00)∗1ω. L is obviously Büchi
recognizable:

1

0

1

0

We will proceed as follows:

1. Introduce the language property “non-counting”.

2. Show that L = (00)∗1ω does not have this property.

3. Show that each LTL-definable ω-language has this property.

Definition 2.24. Call L ⊆ Σω non-counting if

∃n0 ∀n ≥ n0 ∀u, v ∈ Σ∗ ∀β ∈ Σω : uvnβ ∈ L ⇔ uvn+1β ∈ L.

This means for n ≥ n0 either all uvnβ are in L, or none is. L is not non-counting (short: L
is counting) iff

∀n0 ∃n ≥ n0 ∃u, v, β : (uvnβ ∈ L and uvn+1β �∈ L) or (uvnβ �∈ L and uvn+1β ∈ L).

Claim: L = (00)∗1ω is counting.

Given n0 take n = next even number ≥ n0 and u = �, v = 0, β = 1ω. Then uvnβ =
0n1ω (∈ L), but uvn+1β = 0n+11ω (�∈ L). �

Proposition 2.25. Each LTL-definable ω-language L is non-counting:

∃n0 ∀n ≥ n0 ∀u, v ∈ Σ∗ ∀β ∈ Σω : uvnβ ∈ L ⇔ uvn+1β ∈ L

Proof by induction on LTL-formulas ϕ.

ϕ = pi : Take n0 = 1. Whether uvnβ ∈ L only depends on first letter. This is the same
letter as in uvn+1β. So uvnβ ∈ L iff uvn+1β ∈ L.

ϕ = ¬ψ : The claim is trivial. [ uvnβ �∈ L ⇔ uvn+1β �∈ L ]

ϕ = ψ1 ∧ ψ2 : ψ1, ψ2 define non-counting L1, L2 (with n1, n2) by induction hypothesis. Take
n0 = max(n1, n2). Then the claim is true for L1 ∩ L2, defined by ψ1 ∧ ψ2.

ϕ = Xψ : By induction hypothesis assume ψ defines non-counting L with n1.

Take n0 := n1 + 1, at least n0 ≥ 2.

For n ≥ n0 we have to show: uvnβ |= Xψ iff uvn+1β |= Xψ.
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If u �= �, say u = au�, then use the above induction hypothesis:

u�vnβ |= ψ iff u�vn+1β |= ψ.

If u = � and v = av� then use (for n ≥ n0)

vnβ |= Xψ iff v�vn−1β |= ψ iff v�vnβ |= ψ iff vn+1β |= Xψ.

ϕ = ψ1Uψ2 : ψ1, ψ2 defining non-counting L1, L2 (with n1, n2) by induction hypothesis.
Take n0 := 2 · max(n1, n2). We have to show: for all n ≥ n0:

uvnβ |= ψ1Uψ2 iff uvn+1β |= ψ1Uψ2.

More precisely:

for some j: (uvnβ)j |= ψ2 and for every i < j: (uvnβ)i |= ψ1

iff for some j: (uvn+1β)j |= ψ2 and for every i < j: (uvn+1β)i |= ψ1.

Since both sides of the equivalence are symmetric, we only consider the proof from left
to right. Therefore we have to show:

if for some j: (uvnβ)j |= ψ2 and for every i < j: (uvnβ)i |= ψ1

then for some j: (uvn+1β)j |= ψ2 and for every i < j: (uvn+1β)i |= ψ1

Case 1: (uvnβ)j contains ≥ max{n1, n2} v-segments

n + 1 :

n :
u

u

v

v v

v v

v v

v v

v v

v

v

β

β

≥ max{n1, n2}

i j

ji

Then for every i ≤ j (uvnβ)i also contains ≥ max{n1, n2} v-segments. Hence by the
induction hypothesis we know that

(uvnβ)i |= ψ1 ⇔ (uvn+1β)i |= ψ1

for every i < j and

(uvnβ)j |= ψ2 ⇔ (uvn+1β)j |= ψ2.

Therefore

uvnβ |= ψ1Uψ2 ⇔ uvn+1β |= ψ1Uψ2.

Case 2: (uvnβ)j contains < max{n1, n2} v-segments

Then by the choice of n0 (uvnβ)[0 . . . j] has ≥ max{n1, n2} + 1 v-segments.
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j

n + 1 :

n :
u v

v

v v v v v

v v v v v v

u · v

u

β

β
ψ1

ψ1

≥ max{n1, n2} + 1

j + |v|

Consider now for i ≤ |uv| the words (uvnβ)i: Since each of these words contains ≥
max{n1, n2} v-segments, we know by the induction hypothesis

(uvnβ)i |= ψ1 ⇔ (uvn+1β)i |= ψ1.

For |uv| < i < j + |v| (uvnβ)i = (uvn+1β)i+|v| and hence

(uvn+1β)i |= ψ1 and (uvn+1β)j+|v| |= ψ2.

Therefore we obtain

uvnβ |= ψ1Uψ2 ⇔ uvn+1β |= ψ1Uψ2.

�

We have proven that LTL-formulas are less expressive than Büchi automata. Now we are
going to introduce a logic which can define the same class of languages as Büchi automata.

2.6 S1S (Second-Order Theory of One Successor)

The idea is to use the following elements

• variables s, t, . . . for time-points (positions in ω-words),

• variables X, Y, . . . for sets of positions,

• the constant 0 for position 0, the successor function �, equality =, and the less-than
relation <,

• the usual Boolean connectives and the quantifiers ∃, ∀.

For clarification we compare LTL-formulas to S1S-formulas.

Example 2.26. (LTL-formulas and their translation to S1S)

GFp1 : ∀s∃t(s ≤ t ∧ X1(t))
XX(p2 → Fp1) : X2(0

��) → ∃t(0�� ≤ t ∧ X1(t))
F(p1 ∧ X(¬p2Up1)) : ∃t1(X1(t1) ∧ ∃t2(t

�
1 ≤ t2 ∧ X1(t2)∧

∀t((t�1 ≤ t ∧ t < t2) → ¬X2(t))))
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Let us define a counting language using S1S: L = (00)∗1ω

∃X ∃t(X(0) ∧ ∀s(X(s) ↔ ¬X(s�)) ∧ X(t) ∧ ∀s(s < t → ¬X1(s)) ∧ ∀s(t ≤ s → X1(s)))

�

There are three points that we need to address, in order to prove equality in expressiveness
between S1S and Büchi automata.

1. Syntax and semantics of S1S.

2. Expressive power: Büchi recognizable ω-languages are S1S-definable.

3. S1S-definable ω-languages are Büchi recognizable (Preparation).

Syntax and Semantics of S1S

Definition 2.27. (Syntax of S1S) S1S-formulas are defined over variables:

• first-order variables s, t, . . . , x, y, . . . (ranging over natural numbers, i.e. positions in
ω-words),

• second-order variables X, X1, X2, Y, Y1, . . . (ranging over sets of natural numbers).

Terms are

• the constant 0 and first-order variables,

• for any term τ also τ � (the successor of τ).

For instance, consider the terms: t, t�, t��, 0, 0�, 0��. We can now define four classes of S1S-
formulas:

• Atomic formulas: X(τ), σ < τ , σ = τ for terms σ, τ . Note that the atomic formula
X(τ) is also denoted by τ ∈ X.

• First-order formulas (S1S1-formulas) are built up from atomic formulas using Boolean
connectives and quantifiers ∃,∀ over first-order variables.

• S1S-formulas are built up from atomic formulas using Boolean connectives and quanti-
fiers ∃,∀ over first-order variables and second-order variables.

• Existential S1S-formulas are S1S1-formulas preceded by a block ∃Y1 . . .∃Ym of existen-
tial second-order quantifiers.

Example 2.28. First-order formulas:

ϕ1(X) : ∀s∃t(s < t ∧ X(t))

ϕ2(X1, X2) : X2(0
��) → ∃t(0�� ≤ t ∧ X1(t))

ϕ3(X1, X2) : ∃t1(X1(t1) ∧ ∃t2(t
�
1 ≤ t2 ∧ X1(t2) ∧

∀t((t�1 ≤ t ∧ t < t2) → ¬X2(t))))

An existential second-order formula:

ϕ4(X1) : ∃X ∃t(X(0) ∧ ∀s(X(s) ↔ ¬X(s�)) ∧ X(t)

∧∀s(s < t → ¬X1(s)) ∧ ∀s(t ≤ s → X1(s)))

�
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Notation: ϕ(X1, . . . , Xn) indicates that at most the variables X1, . . . , Xn occur freely in ϕ,
i.e. are not in the scope of a quantifier.

Definition 2.29. (Semantics of S1S) We need a mathematical structure over which S1S-
formulas can be interpreted. We will

• use N as the universe for the first-order variables,

• use 2N (the powerset of N) as the universe for the second-order variables,

• apply the standard semantics for Boolean connectives and quantifiers.

We write (N, 0,+1, <, P1, . . . , Pn) |= ϕ(X1, . . . , Xn) if ϕ is true in this semantics, with P1 ⊆
N, . . . , Pn ⊆ N as interpretations of X1, . . . , Xn. Therefore we need only specify P =
P1, . . . , Pn. P can be coded by the ω-word α(P ) ∈ ((Bn)ω defined by

i ∈ Pk ⇐⇒ (α(i))k = 1.

Then we simply write: α(P ) |= ϕ(X1, . . . , Xn).

Example 2.30. (Satisfaction of a S1S-formula)

ϕ3(X1, X2) : ∃t1(X1(t1) ∧ ∃t2(t
�
1 ≤ t2 ∧ X1(t2) ∧

∀t((t�1 ≤ t ∧ t < t2)� �� �
t1<t<t2

→ ¬X2(t))))

Let P1 be the set of even numbers, P2 be the set of prime numbers.

α(P1, P2) :

t 0 1 2 3 4 5 6 . . .

P1 1 0 1 0 1 0 1 . . .
P2 0 0 1 1 0 1 0 . . .

t1 t2

The time t1 and t2 instances fulfill ϕ3 for P1 and P2: α |= ϕ3(X1, X2) �

Definition 2.31. (S1S-definable languages) An ω-language L ⊆ (Bn)ω is S1S-definable if for
some S1S-formula ϕ(X1, . . . , Xn) we have

L = {α ∈ (Bn)ω | α |= ϕ(X1, . . . , Xn)}.

We similarly define first-order definable, existential second-order definable.

Example 2.32. (Some ω-languages defined by S1S)

1. L = {α ∈ Bω | α has infinitely many 1} is first-order definable by

∀s∃t(s < t ∧ X1(t)).

2. (00)∗1ω is existential second-order definable by

ϕ4(X1) : ∃X ∃t(X(0) ∧ ∀s(X(s) ↔ ¬X(s�)) ∧ X(t)

∧∀s(s < t → ¬X1(s)) ∧ ∀s(t ≤ s → X1(s))).

�
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From Büchi automata to S1S Before showing that Büchi automata can be translated to
S1S-formulas, we prove the latter for LTL.

Theorem 2.33. A LTL-definable ω-language is S1S1-definable.

For an illustration of the proof let us recall the example translations from the beginning of
the section:

GFp1 : ∀s∃t(s ≤ t ∧ X1(t))
XX(p2 → Fp1) : X2(0

��) → ∃t(0�� ≤ t ∧ X1(t))
F(p1 ∧ X(¬p2Up1)) : ∃t1(X1(t1) ∧ ∃t2(t

�
1 ≤ t2 ∧ X1(t2)∧

∀t((t�1 ≤ t ∧ t < t2) → ¬X2(t))))

In general, the idea is to describe the semantics of the temporal operators in S1S. Once this
is done, Theorem 2.33 can be proven inductively (Exercise).

Theorem 2.34. A Büchi-recognizable ω-language is S1S-definable.

Idea: For Büchi automaton A over the input alphabet Bn find a S1S-formula ϕ(X1, . . . , Xn)
such that

A accepts α iff α |= ϕ(X1, . . . , Xn).

We express in ϕ(X1, . . . , Xn): “There is a successful run of A on the input given by X1, . . . , Xn”.
But how to express the existence of a run? Assume A has m states q1, . . . , qm (q1 initial)
Then a run ρ(0)ρ(1) . . . is coded by m sets Y1, . . . , Ym with

i ∈ Yk ⇐⇒ ρ(i) = qk.

Example 2.35. (Transformation of a Büchi automaton to a S1S-formula)

q1

1

q2

1

0 q3 1

Input 1 1 1 0 1 1 1

Run Y1 1∗ 0 1∗
Y2 0 1∗ 0 ∗
Y3 0 0 0 ∗ ∗ ∗

The stars mark the state at the given point of the input word. Naturally the automaton can
only be in one state for each point of time. Therefore there is just one 1 in every column
of the run. How can we describe a successful run? That is, how do we set constraints to
X1, . . . , Xn? Consider the formula

ϕ(X1) = ∃Y1Y2Y3 (Partition(Y1, . . . , Ym) ∧ Y1(0) ∧
∀t((Y1(t) ∧ X1(t) ∧ Y2(t

�)) ∨ (Y2(t) ∧ X1(t) ∧ Y1(t
�))

∨(Y2(t) ∧ ¬X1(t) ∧ Y3(t
�)) ∨ (Y3(t) ∧ X1(t) ∧ Y3(t

�)))

∧∀s∃t(s < t ∧ Y3(t))).

Partition is an expression for the above mentioned unambiguous of the automaton state.
Since there is just one 1 in every Y-bitvector, Y1, Y2, Y3 have to form a partition of N.

Y1(0) states that the automaton starts in q1. The following subformulas in the scope of
the first ∀-quantifier represent the transition relation. The last subformula demands that the
automaton enters the final state infinitely often. �
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Proof of Theorem 2.34 In order to be able to translate an Büchi automata with m states,
some formulas, which are needed, have to be prepared:

Preparation 1: Partition(Y1, . . . , Ym) := ∀t (
�m

i=1 Yi(t)) ∧ ∀t
�
¬�

i�=j(Yi(t) ∧ Yj(t))
�
.

Preparation 2: For a ∈ Bn, say a = (b1, . . . , bn), we write Xa(t) as an abbreviation for

(b1)X1(t) ∧ (b2)X2(t) ∧ . . . ∧ (bn)Xn(t)

where (bi) = ¬ if bi = 0, and bi is empty if bi = 1. For instance a = (1, 0, 1) : Xa(t) =
X1(t) ∧ ¬X2(t) ∧ X3(t).

Now we can translate any Büchi automaton to an equivalent S1S-formula: Given the
Büchi automaton A = (Q, Bn, 1,Δ, F ) with Q = {1, . . . , m}, define

ϕ(X1, . . . , Xn) = ∃Y1 . . . Ym

�
Partition(Y1, . . . , Ym) ∧ Y1(0)

∧ ∀t
� �

(i,a,j)∈Δ

(Yi(t) ∧ Xa(t) ∧ Yj(t
�))

�

∧ ∀s∃t
�
s < t ∧

�

i∈F

Yi(t)
��

.

Obviously this is just a generalization of Example 2.35. The first line gives the partitioning
of N and the start state 1. Line 2 describes all transitions of A and line 3 the acceptance
condition.

We conclude: A Büchi recognizable ω-language is existential second-order definable (within
S1S). �

In order to prove the reverse direction, we need more automata theory, which we will develop
in the next chapter.

2.7 Exercises

Exercise 2.1. Consider the lift system from the introduction, now with only 4 floors. Present
a set of propositions (10 are enough) needed to describe the following properties as LTL-
formulas, and give the corresponding LTL-formulas:

(a) Every requested floor will be served sometime.

(b) Again and again the lift returns to floor 1.

(c) When the top floor is requested, the lift serves it immediately and does not stop on the
way there.

(d) While moving in one direction, the lift will stop at every requested floor, unless the top
floor is requested.

Exercise 2.2. Construct a Büchi automaton, which recognizes the set of ω-words α ∈
({0, 1}2)ω with

α |= G(p1 → X(p2Up1)).

Exercise 2.3. Show that there is no Büchi automaton with less than three states that
recognizes the set of ω-words α ∈ ({0, 1}2)ω with α |= G(p1 → XFp2).
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Exercise 2.4. Let φ, ψ and χ be LTL-formulas. Consider the following equivalences:

(a) FGφ ≡ GFφ,

(b) X(φ ∧ ψ) ≡ Xφ ∧ Xψ,

(c) (φ ∨ ψ)Uχ ≡ φUχ ∨ ψUχ, and

(d) (φUψ)Uχ ≡ φU(ψUχ).

Prove or disprove their correctness.

Exercise 2.5. Consider the LTL-formula φ = p1U(Xp2).

(a) Let α ∈ ({0, 1}2)ω. Formulate the compatibility conditions for the φ-expansion of α in
the present case.

(b) Construct, using the procedure from Theorem 3.1, a generalized Büchi automaton A
which is equivalent to φ. First derive from (a) the set of compatible states, and then the
transition graph of A. What are the final states of A?

(c) Construct directly a Büchi automaton recognizing L := {α ∈ ({0, 1}2)ω | α |= φ}.
Exercise 2.6.

(a) Show that the ω-language L1 := (01)ω is non-counting.

(b) Show that the ω-language L2 := 01(0101)∗0ω is counting.

Exercise 2.7. An ω-language L ⊆ Σω is called strictly Büchi recognizable if there is a Büchi
automaton A = (Q,Σ, q0, Δ, F ) such that

L = {α ∈ Σω | there is a run of A on α visiting precisely the states in F infinitely often}.

Prove, or give a counter-example, for each direction of the following equivalence:

L is Büchi recognizable ⇐⇒ L is strictly Büchi recognizable.

Exercise 2.8. Let φ, ψ be LTL-formulas. We define new operators for LTL:

(a) “at next” φAXψ: At the next time where ψ holds, also φ does.

(b) “while” φWψ: φ holds at least as long as ψ does.

(c) “before” φBψ: If ψ holds sometime, φ does so before.

Show that adding these operators to LTL does not increase the expressive power, i.e. find for
every formula from above an equivalent (ordinary) LTL-formula.

Exercise 2.9. Let A be the following Büchi automaton:

q0
1 q1

1

0

q2

0

Construct, using the method from the lecture, a S1S-formula φ(X) such that α ∈ {0, 1}ω

satisfies φ iff A accepts α.
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Exercise 2.10. Give S1S-formulas φ1(X1, X2) and φ2(X1, X2) for the following ω-languages:

(a) L1 :=
�

1
1

��
1
0

�∗� 1 0
1 0

�ω

(b) L2 :=
�

1 1 1
1 1 1

�∗� 0
1

�ω

Explain the purpose of the main subformulas of φ1(X1, X2) and φ2(X1, X2).

Exercise 2.11. Consider the following Büchi automaton:

A : q0

1

q1

1

0

q2

0

(a) Construct a S1S1-formula equivalent to A.

(b) Construct a LTL-formula equivalent to A.



Chapter 3

Theory of Deterministic
Omega-Automata

3.1 Deterministic Omega-Automata

In this chapter we are going to deal with the theory of deterministic ω-automata, as it was
developed in the 1960s by Muller, McNaughton, and Rabin. The crucial point of this
chapter is the transformation of nondeterministic Büchi automata into deterministic Muller
automata. We will follow the construction discovered by Safra in 1988.

Definition 3.1. Let Inf(ρ) = {q ∈ Q | q occurs infinitely often in ρ}. A deterministic ω-
automaton A = (Q,Σ, q0, δ, Acc) is called

Muller automaton if Acc is of the form F = {F1, . . . , Fk} with Fi ⊆ Q, and a run ρ is
successful if Inf(ρ) ∈ F .

Rabin automaton if Acc is of the form Ω = ((E1, F1), (E2, F2), . . . , (Ek, Fk)) with Ei, Fi ⊆
Q, and a run ρ is successful if

�k
i=1(Inf(ρ) ∩ Ei = ∅ ∧ Inf(ρ) ∩ Fi �= ∅).

ρ acc
Inf(ρ)

E2

F1
F2

E1

Q

acc

A Büchi automaton is a special case of a Rabin automaton. That Rabin automaton would
have Ω = ((E1, F1)) with E1 = ∅ and F1 = set of final states.

Lemma 3.2. L ⊆ Σω is deterministically Muller recognizable ⇔ L is a Boolean combination
of deterministically Büchi recognizable ω-languages.

Proof Let the Muller automaton A = (Q,Σ, q0, δ,F) recognize L. Then the following holds:
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α ∈ L ⇔ A accepts α
⇔ ex. F ∈ F : A on α visits the F -states infinitely often.
⇔ �

F∈F

(
�

q∈F

∃ωi : δ(q0, α(0) . . . α(i)) = q� �� � ∧ �

q∈Q\F

¬ ∃ωi : δ(q0, α(0) . . . α(i)) = q� �� �)

α satisfies this condition iff ditto
the Büchi automaton

(Q,Σ, q0, δ, {q}) accepts α.

Therefore L is a Boolean combination of deterministically Büchi recognizable ω-languages.
The reverse direction can be shown by induction over the composition of Boolean combi-

nations. The beginning of the induction is clear since every deterministic Büchi automaton is
a special case of a deterministic Muller automaton. For the induction step, we need to show
that the class of deterministically Muller recognizable languages is closed under complement,
intersection, and union.

A part of the induction step: L ⊆ Σω det. Muller recognizable ⇒ Σω\L det. Muller recog-
nizable. If L is recognized by (Q,Σ, q0, δ,F) then Σω \L will be recognized by (Q,Σ, q0, δ, 2

Q\
F). �

3.2 McNaughton’s Theorem, Safra Construction

We show the equivalence between nondeterministic Büchi and deterministic Muller automata.
This was first shown by McNaughton in 1966. One direction is easy:

Theorem 3.3. L Muller recognizable ⇒ L nondeterministically Büchi recognizable.

Proof Let A = (Q,Σ, q0, δ,F) recognize L with F = {F1, . . . , Fk}. The structure of an
accepting run looks like the following:

States that are
visited only finitely
often

. . . δ

α

Fi
Fi

Fi

Idea for the Büchi automaton B: B guesses the position on the input from which onwards A

only enters states in Inf(ρ). B also guesses the index i of the final set Fi und asserts whether
Fi is entered again and again.

• QB = Q ∪ (Q × 2Q × {1, . . . , k})

• qB
0 = q0

• FB = {(p, ∅, j)|p ∈ Q, j ∈ {1, . . . , k}}

• ΔB contains (for all j ∈ {1, . . . , k})

(p, a, q) and (p, a, (q, ∅, j)) if δ(p, a) = q,
((p, P, j), a, (q, P ∪ {q}, j)) if δ(p, a) = q and P ∪ {q} � Fj ,
((p, P, j), a, (q, ∅, j)) if δ(p, a) = q and P ∪ {q} = Fj . �
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Figure 3.1: The column on the right, read top down, is the sequence of Safra trees for the
given automaton on ccbcb. The intermediate steps are shown on the left. Within a node, the
name of the node is on the left and the label on the right.

Theorem 3.4. (McNaughton’s Theorem) L nondeterministically Büchi recognizable ⇒ L is
deterministically Muller recognizable.

Before proving the theorem, let us consider an example which shows that the powerset con-
struction, as known from finite automata theory, does not work.

A “macro state” is a set of states of the given Büchi automaton A = (Q,Σ, q0, Δ, F ). If
we apply the powerset construction on the following Büchi automaton, the new automaton
will also accept the word (ab)ω, since some macro state which contains a final state is entered
infinitely often.

a,b b
b

1 2 Input a b a b a b . . .

macro state 1 1 1,2 1 1,2 1 1,2 . . .

To show McNaughton’s Theorem we use a generalized powerset construction that is based on
a construction by Safra (1988). In this construction, the macro states are not sets of states
but rather trees, whose nodes are labeled with sets of states of the Büchi automaton. The
powerset construction is performed on each node and new child nodes are branched off for
final states. A state that is contained in several childs of a node, will remain in the oldest
child only. Nodes with empty labels are removed (except the root node). If the union of the
labels of the childs of a node is equal to the label of that node, then all children and their
descendants are deleted und that node will be marked with “!”. An example can be seen in
Figure 3.1.

Definition 3.5. A Safra tree over Q is an ordered finite tree with node names in {1, . . . , 2|Q|},
whose nodes are each labeled with a nonempty subset R of Q (R = ∅ is only allowed in the
root node) or with a pair (R, !). The state sets of brother nodes are disjoint and the union of
the labels of child nodes is a proper subset of the label of the parent node.
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Remark 3.6. Since Q is finite, the set of Safra trees over Q is also finite.

Notation: P
w
� R (P, R ⊆ Q) denotes: ∀r ∈ R : ∃p ∈ P A : p

w→ r.

Remark 3.7. Let

R0
u1
� P1

v1
� R1!

u2
� P2

v2
� R2! . . . Pi

vi
� Ri!

⊆ = ⊆ = ⊆ =

F1
v1
� Q1 F2

v2
� Q2 Fi

vi
� Qi

where Fi = set of final states of Pi.

Then ∀r ∈ Ri ∃p ∈ R0 : A reaches from p via input u1v1u2v2 . . . uivi state r with ≥ i visits
in final states.

This is made clear by retracing a run from Ri! over the stages Qi, Fi, Pi, Ri−1!, Qi−1, . . . .

Lemma 3.8. (König’s Lemma) A finitely branching, infinite tree contains an infinite path.

Proof Let t be a finitely branching, infinite tree. Define a path π that ensures the following
property for every node v of π: there are infinitely many children of v in t.

The root node fulfills this by definition. This property can be transferred to a child node
v� of v, because the tree is finitely branching (at v). �

Lemma 3.9. Let R0
u1v1
� R1!

u2v2
� R2! . . . Ri!

ui+1vi+1

� . . . as defined in Remark 3.7. Then there
is a successful run of the nondeterministic Büchi automaton A on u1v1u2v2 . . . , beginning with
a state in R0.

Proof Consider the tree of states that is formed by runs from R0 to r via u1v1 . . . uivi, for
each state r ∈ Ri. These runs form an infinite and finitely branching tree. Then by König’s
Lemma there is an infinite path in this tree. This path describes an infinite (successful) run
of A during which A enters a final state after each prefix u1v1 . . . uivi. �

Proof of Theorem 3.4: Definition of the desired Muller automaton B for a given Büchi
automaton A:

• QB := Set of Safra trees over Q.

• q0B := Safra tree consisting of just the root with label {q0}.

• For the definition of δB: Compute δB(s, a) for the Safra tree s, a ∈ A in four stages:

1. For every node with a label that contains final states, introduce a new child node
with a label that only consists of these final states. Take a free number from 2|Q|
as the name for that node. We will show in the next section that a Safra tree has
got at most |Q| nodes. Since at most one child node is introduced for every node,
2|Q| node names suffice.

2. Apply the powerset construction to each node label for the input letter a: R →
{r� | ∃(r, a, r�) ∈ Δ, with r ∈ R}.
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3. Cancel the state q from a node and from all nodes in its subtree if it also occurs
in an older brother node. Cancel a node and its descendants if it carries the label
∅ (unless it is the root).

4. Cancel all sons and their descendants if the union of their labels is the parent label.
In this case mark the parent node with “!”.

• Definition of the system F of final state sets:

A set S of Safra trees is in F ⇔ there exists a node name that appears in each s ∈ S,
and if in some tree s ∈ S, the label of this node name carries the marker “!”.

Now we need to show: L(A) = L(B).

⊇ Let the constructed Muller automaton B accept α. Consider the run of Safra trees of B

on α. Then there is a node k which, by definition of F , occurs in every Safra tree from
some point onwards and is marked with “!” infinitely often. Hence, for a suitable R, R!
occurs again and again as a label of k.

Then we have, according to Remark 3.9, a successful run of A on α. Therefore α is
accepted by A.

⊆ Let the Büchi automaton A accept α. Trace a successful run of B on α, in which a final
state q is visited infinitely often. Observe in which Safra trees (of the unambiguous run
of B) this state q occurs.

If the root is labeled with “!” infinitely often, then α will be accepted by B.

Otherwise consider the first occurence of a final state in the Büchi run after the root
was marked off with “!” for the last time. From this point onwards the current state
is always in the label of one of the child nodes of the root. That will eventually be a
fixed child node k1, since states can only be transferred to older child nodes. Now we
can apply the same line of reasoning to the node k1 as we did for the root: Either k1

will be marked infinitely often, or we will find a child k2 of k1 that will from some point
onwards contain the current state of the Büchi run. Thus we obtain a sequence of nodes
k1, k2, . . ..

As Safra trees are limited in depth, a node ki must eventually be marked infinitely often
and therefore B accepts.

�

3.3 Complexity Analysis of the Safra Construction

Remark 3.10. Let |Q| = n. Then every Safra tree over Q has got at most n nodes.

Proof by induction over the height of Safra trees.

Height 0: The Safra tree has got one node (≤ n). Assumption clear.
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Height h+1: Safra tree

QkQ2Q1 . . .

Q0

Q0 ⊆ Q, and Q1, . . . Qk are disjoint and the union of them is a proper subset of Q0. The
subtrees are Safra trees over Q1, . . . Qk (say |Qi| = ni), at each case with ≤ n1, . . . ,≤ nk

nodes by induction hypothesis. The number of nodes of the Safra tree of height h + 1
is therefore ≤ n1 + · · · + nk + 1 ≤ |Q|.

�

To simplify the description of Safra trees we introduce the notion of the characteristic node
of a state q ∈ Q. This is the node with q in its label and whose children are not labeled with
a set containing q. The labeling of a Safra tree is uniquely determined by the assignment q �→
name of the characteristic node of q.

Consequently, a Safra tree s is specified by four functions:

1. Assignment of the characteristic nodes Q → {0, . . . , 2n}, where q �→ 0 ⇔ q is not
contained in the tree.

2. “!”-Marking: {1, . . . , 2n} → {0, 1} (value = 1 iff label has “!”).

3. Father function: {1, . . . , 2n} → {0, . . . , 2n}, where Father(i) = 0 ⇔ i is not contained
in s.

4. Brother function: {1, . . . , 2n} → {0, . . . , 2n}, where Brother(i) = 0 ⇔ i is not contained
in s.

The number of Safra trees is therefore ≤ number of quadrupels of those functions
≤ (2n + 1)n · 22n · (2n + 1)2n · (2n + 1)2n

≤ (2n + 1)7n ∈ 2O(n log n).

We obtain “more states” than by using the powerset construction (with 2n states).

The Muller acceptance condition, defined in the proof of Theorem 3.4, can be transformed
into an equivalent Rabin acceptance condition ((E1, F1), . . . , (Em, Fm)), where

Ek := Set of all Safra trees without the node k,
Fk := Set of all Safra trees with the node k marked with “!”.

Then the following holds:

Inf(ρ) ∈ F ⇔ for a node name k:
Inf(ρ) ∩ Ek = ∅ (k must occur in every s ∈ Inf(ρ) then)
Inf(ρ) ∩ Fk �= ∅ (Marker ! occurs with k in a s ∈ In(ρ))

We can infer Safra’s Theorem:

Theorem 3.11. (Safra 1988) A Büchi automaton with n states is transformed by the Safra
construction into a deterministic Rabin automaton with 2O(n log n) states and O(n) accepting
pairs (Ek, Fk) (more precisely: 2n pairs).
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One can show that this construction is optimal:

Theorem 3.12. (M. Michel 1988, C. Löding 1998) There is no translation of nondeter-
ministic Büchi automata with O(n) states into deterministic Rabin automata with 2O(n).

The upper bound of the powerset construction is always exceeded. Proof strategy:

1. Specify a family (Ln)n≥1 of ω-languages Ln ⊆ {1, . . . , n, #}ω, which is recognized by a
Büchi automaton with O(n) states.

2. Prove that Ln cannot be recognized by a deterministic Rabin automaton with 2O(n)

states.

For 1.: Define Ln by the Büchi automaton Bn, alphabet Σ = {1, . . . , n,#}. All states of Bn

are initial states.

1, . . . , n, #

. . .q0

1, . . . , n, # 1, . . . , n, #

1

2
n

q1 q2 qn

Remark 3.13. The alphabet depends on n. We can change it into a fixed alphabet {a, b, #} by
the correspondence 1 → ab, 2 → a2b, . . . , n → anb, # → #. The following Büchi automaton,
where the states q0, q1, q2, . . . , qn are initial, recognizes Ln.

q�2

b, #

aa

q0 qn

a

a

a

a

a

b

b

b

. . .

. . .

. . .

q1

a

a

a

a a

b, #

q�1

b

q2

b, #

aa

q�n

Lemma 3.14. α ∈ Ln ⇔ (∗) there are pairwise distinct letters i1, . . . , ik ∈ {1, . . . , n},
such that the segments made up of letter
pairs i1i2, i2i3, . . . , ik−1ik, iki1 occur infinitely often in α.

Proof

⇐ Let (∗) hold for i1, . . . , ik. Find the successful run of Bn on α in the following way:

Go to qi1 and stay there until i1i2 occurs for the first time. Then do the following:

qi1
i1→ q0

i2→ qi2 . Similarly with i2i3, i3i4, . . . in the cycle i1, i2, . . . , ik, i1. Thereby we
obtain infinitely many visits to q0 and Bn accepts.

⇒ Assume Bn accepts α but (∗) fails. Pick a position p in α such that the letter pairs i1i2
occuring later will in fact occur infinitely often.

If the state qi �= q0 is visited after p and q0 later than that, then no return to qi is
possible, since otherwise we would get a cycle as in (∗).
Since qi �= q0 was arbitrary, the run would eventually stay in q0. Contradiction. �
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Lemma 3.15. (Permutation Lemma) For every permutation (i1 . . . in) of (1, . . . , n) the ω-
Word (i1 . . . in#)ω is not in Ln.

To prove 2. we just need a remark on Rabin automata.

Lemma 3.16. (Union Lemma) Let R = (Q,Σ, q0, δ, Ω) be a Rabin automaton with Ω =
{(E1, F1), . . . , (Ek, Fk)}. Let ρ1, ρ2, ρ ∈ Qω be runs of R with Inf(ρ1) ∪ Inf(ρ2) = Inf(ρ). If
ρ1 and ρ2 are not successful, then ρ is not successful, either.

Proof Assume ρ1, ρ2 are not successful and ρ is successful. Then there exists an i ∈ {1, . . . , k}
with Inf(ρ)∩Ei = ∅ and Inf(ρ)∩Fi �= ∅. Because of Inf(ρ1)∪ Inf(ρ2) = Inf(ρ), Inf(ρ1)∩Ei =
Inf(ρ2) ∩ Ei = ∅ holds, and also Inf(ρx) ∩ Fi �= ∅ for a x ∈ {1, 2}. Thus ρx is successful.
Contradiction. �

Proof of Theorem 3.12 Let the deterministic Rabin automaton Cn recognize Ln. Claim:
Cn has got ≥ n! states.

Consider two different permutations (i1, . . . , in), (j1 . . . , jn) of 1, . . . , n. Then the ω-words
(i1 . . . in#)ω

� �� �
α

, (j1 . . . jn#)ω

� �� �
β

are not accepted by Cn. Let ρα, ρβ be the non-accepting runs of Cn

on α and β. Set R := Inf(ρα) and S := Inf(ρβ).

Claim: R ∩ S = ∅. From this follows (since there are n! permutations) that Cn has got at
least n! states and we are finished.

Assume q ∈ R ∩ S: From ρα, ρβ construct a new run of Cn, on the new input, that has
the following structure:

qq0

input segment i1 . . . in is processed at least once.

input segment j1 . . . jn is processed at least once.
S is completely visited at least once and
On segment of β, according to ρβ ,

R is completely visited at least once and
On segment of α, according to ρα,

Repeating these two loops in alternation, we get a new input word γ and a new run of Cn on
γ with Inf(ργ) = R ∪ S. According to Lemma 3.16, Cn does not accept γ.

Both i1 . . . in and j1 . . . jn occur infinitely often in γ. Since i1 . . . in �= j1 . . . jn choose the
smallest k with ik �= jk. Then we have the following situation:

i1 . . . ik−1 ik

= = �=

j1 jk−1 jk

There has to be an il, l > k, with il = jk, as well as a jr, r > k, with jr = ik. We therefore
obtain a cycle that corresponds to the characterization of Ln.

ikik+1, . . . , il−1il , jkjk+1, . . . , jr−1jr , ikik+1, . . .
� �

jk ik
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Thus γ ∈ Ln which is a contradiction to our choice of Cn. Therefore Theorem 3.12 has been
proved. �

It is an open question whether there are ω-languages Ln that can be recognized by nondeter-
ministic Büchi automata with O(n) states and only by deterministic Muller automata with
≥ n! states.

Remark 3.17. The example languages Ln as defined for the proof of Theorem 3.12 are
recognized by deterministic Muller automata with O(n2) states.

3.4 Logical Application: From S1S to Büchi Automata

In the last chapter we tried to show the equivalence of the logic S1S and Büchi automata.
Now we have the tools ready to prove that every S1S definable language is Büchi recognizable.
As a consequence of McNaughton’s Theorem we see:

Theorem 3.18. The class of Büchi recognizable ω-languages is closed under complement.

Proof Given a Büchi automaton B, construct a Büchi automaton for the complement ω-
language as follows:

1. From B obtain an equivalent deterministic Muller automaton M by Safra’s construction.

2. In M declare the non-accepting state sets as accepting and vice versa and thus obtain
M�.

3. From M� obtain an equivalent Büchi automaton B�.

�

We showed that a Büchi-recognizable ω-language is S1S definable. Now we prove the converse:

Theorem 3.19. An S1S-definable ω-language is Büchi recognizable.

There will be two stages in the proof:

1. Reduction of S1S to a simpler formalism S1S0.

2. Construction of an equivalent Büchi automata by induction on S1S0-formulas.

From S1S to S1S0 For simplification we eliminate some constructs from S1S:

• The constant 0 can be eliminated: Instead of X(0) write

∃t(X(t) ∧ ¬∃s(s < t)).

• The relation symbol < can be eliminated: Instead of s < t write

∀X(X(s�) ∧ ∀y(X(y) → X(y�)) → X(t))

(each set which contains s� and is closed under successors must contain t).
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• The successor function only occurs in formulas of type x� = y: Instead of X(s��) write

∃y∃z(s� = y ∧ y� = z ∧ X(z)).

• Eliminate the use of first-order variables by using different atomic formulas:

X ⊆ Y, Sing(X), Succ(X, Y ),

meaning: “X is subset of Y ”, “X is a singleton set”, and “X = {x}, Y = {y} are
singleton sets with x+1 = y”. Now one can write X(y) as Sing(Y )∧Y ⊆ X and x� = y
as Succ(X, Y ).

Example 3.20. Translation example: ∀x ∃y(x� = y ∧ Z(y)) is written as

∀X(Sing(X) → ∃Y (Sing(Y ) ∧ Succ(X, Y ) ∧ Y ⊆ Z)).

�

Proof of Theorem 3.19 We can assume that S1S-formulas ϕ(X1, . . . , Xn) are rewritten as
S1S0-formulas. We show the claim by induction on S1S0-formulas. It suffices to treat

• the atomic formulas
X1 ⊆ X2, Sing(X1) , Succ(X1, X2),

• the connectives ∨ and ¬, and the existential set quantifier ∃.

We can easily specifiy Büchi automata for the atomic formulas (induction basis):

Atomic formula Corresponding Büchi automaton Recognized example word

X1 ⊆ X2

(0

0),(0

1),(1

1)

X1=001101...
X2=010101...

Sing(X1)

(0

∗
)

(1

∗
)

(0

∗
)

X1 = 000010000 . . .

Succ(X1, X2)

(0

0)

(1

0) (0

1)

(0

0)

X1=0001000...
X2=0000100...

Induction step:

1. Or connective: Consider ϕ1(X1, . . . , Xn) ∨ ϕ2(X1, . . . , Xn).
By induction hypothesis we have Büchi automata A1,A2 that are equivalent to ϕ1, ϕ2.
Take the Büchi automaton for the union as the one equivalent to ϕ1 ∨ ϕ2.

2. Negation: Consider ¬ϕ(X1, . . . , Xn).
By induction hypothesis there is a Büchi automaton equivalent to ϕ.

Apply the closure of Büchi recognizable ω-languages under complement, to obtain a
Büchi automaton equivalent to ¬ϕ.
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3. Existential quantifier: Consider ∃Xϕ(X, X1, . . . , Xn).
Assume A is a Büchi automaton equivalent to ϕ(X, X1, . . . , Xn). In A, change each
transition label (b, b1, . . . , bn) into (b1, . . . , bn); thus obtain A�. Then a transition via b
exists in A� if there is a transition via (0, b) or (1, b) in A.

A� accepts α ∈ (Bn)ω

iff there exists a bit sequence c0c1 . . . such that (c0, α(0)), (c1, α(1)) . . . is accepted by
A

iff ∃c0c1 . . . such that A accepts (c0, α(0)), (c1, α(1)) . . .

iff α |= ∃Xϕ(X, X1, . . . , Xn).

So the Büchi automaton A� is equivalent to ∃Xϕ(X, X1, . . . , Xn). An example:

A :

(0

1)

(1

1)

(0

0)

(1

0)

A� :

1

1

0

0

�

3.5 Complexity of Logic-Automata Translations

We have translated LTL- and S1S-formulas into Büchi automata. The complexity bounds are
very different. We define the k-fold exponential function gk by

g0(n) = n, gk+1(n) = 2gk(n).

Theorem 3.21. (Translation complexity of LTL and S1S)

1. An LTL formula of size n (measured in the number of subformulas) can be translated
into a Büchi automaton with 2n states.

2. There is no k such that each S1S formula of size n (measured in the number of subfor-
mulas) can be translated into a Büchi automaton with gk(n) states.

The case of sentences We will briefly mention a historical application of the translation
from S1S to Büchi automata. Consider sentences, which are formulas without free variables.

The translation of a sentence ϕ into a Büchi automaton Aϕ yields an automaton with
unlabeled transitions.

As we can now see, the sentence ϕ is true in the structure (N,+1, <, 0) iff the automaton
Aϕ has a successful run. The latter condition can be checked with the nonemptiness test.
Consequently, one can decide, for any given S1S-sentence ϕ, whether ϕ is true in (N,+1, <, 0)
or not.

The monadic second-order theory of (N,+1, <, 0) is the set of S1S-sentences that are true
in (N,+1, <, 0). This is written as MTh2(N,+1, <, 0).
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Some example sentences:

∀X ∃Y (∀t(X(t) → Y (t))) true
∀X ∃t∀s(X(s) → s < t) false
∀X(X(0) ∧ ∀s(X(s) → X(s�)) → ∀tX(t)) true

By applying the above mentioned translation into Büchi automata and by testing for
nonemptiness, we immediately see :

Theorem 3.22. (Büchi 1960) The theory MTh2(N,+1, <, 0) is decidable.

3.6 Classification of Omega-Regular Languages and Sequence
Properties

Up to now we have treated general logical and automata theoretical methods to describe
sequence properties (i.e. system properties). However the last section showed that taking too
broad a view results in computationally infeasible results.

In Section 2.2 we mentioned several interesting sequence properties, e.g. “safety”, “guar-
anty” and so on. We will now narrow our view of ω-languages to automata models which
correspond to those properties. Using those models we will prove certain relationships be-
tween those properties, i.e. can some property be expressed by some other property? This
will give us the tools to solve infinite games in the second part of this course.

So what are we going to do in this section?

1. Definition of a natural classification scheme based on deterministic automata.

2. Comparison of the levels of this classification.

3. Decision to which level a given property belongs.

The four basic types of sequence properties We have already seen a wide variety
of sequence properties in Section 2.2. The following four basic properties can be described
intuitively:

• Guaranty condition requires that some finite prefix has a certain property.

• Safety condition requires that all finite prefixes have a certain property.

• Recurrence condition requires that infinitely many finite prefixes have a certain
property.

• Persistence condition requires that almost all (i.e. from a certain point onwards all)
finite prefixes have a certain property.

We shall describe the prefix properties by deterministic automata.

Definition 3.23. Given a deterministic automaton A = (Q,Σ, q0, δ, F ) ,

• A E-accepts α ⇔ exists a run ρ of A on α with ∃i : ρ(i) ∈ F .

• A A-accepts α ⇔ exists a run ρ of A on α, so that ∀i : ρ(i) ∈ F .
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• A Büchi-accepts α ⇔ exists a run, so that ∀j∃i ≥ j : ρ(i) ∈ F .

• A co-Büchi-accepts α ⇔ exists a run ρ of A on α, so that for almost all i (except of
finitely many, written: ∀ωi ) ρ(i) ∈ F holds, i.e. from some point onwards only final
states will be visited.

The notions A-, E-, and co-Büchi automaton and A-, E-, and co-Büchi recognizable are defined
accordingly.

Example 3.24. Let Σ = {a, b, c}.
L1 = {α ∈ Σω | no c in α}. L1 is A-recognizable by

a,b

c

a,b,c

L2 = {α ∈ Σω | c only finitely often in α}. L2 is co-Büchi recognizable by

a,b
c

a,b

c

�

By intuition we can summarize some relationships between acceptance conditions on the one
side and sequence properties on the other side, in Table 3.1.

We want to show the following connections for specifications by automata:

• Guaranty and safety properties can be rewritten as recurrence and persistence proper-
ties.

• Guaranty properties cannot be described as safety properties (and vice versa).

• The same holds for recurrence and persistence properties.

These claims can be proven within the precise framework of ω-automata.

Theorem 3.25. Let L ⊆ Σω.

a) L deterministically E-recognizable ⇔ L = U · Σω for a regular U ⊆ Σ∗.

b) L deterministically Büchi recognizable ⇔ L = lim(U) for a regular U ⊆ Σ∗.

Proof Item (b) was shown earlier in the proof of Theorem 1.10 b). Proof of (a): Similar to
the proof of Theorem 1.10 b): Let U be recognized by the DFA A = (Q,Σ, q0, δ, F ) . Use A

as a deterministic E-automaton, now called B.

B accepts α
Def⇐⇒ The unambiguous run of B on α enters F at least once
⇐⇒ ∃i : A reaches a state in F after α(0) . . . α(i)
⇐⇒ ∃i : α(0) . . . α(i) ∈ U (according to the def. of A)
⇐⇒ α ∈ U · Σω.

�
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Büchi acceptance co-Büchi acceptance

grasps “recurrence properties” grasps “persistence properties”

Illustration: F Illustration: F

System assumes desired states again and System finally assumes desired
again states only

E-acceptance A-acceptance

grasps “guaranty properties” grasps “safety properties”

Illustration: F Illustration: F

forbidden
area

System assumes desired state System is always in a desired
sometime state

Table 3.1: Overview

Lemma 3.26. (Complement Lemma) Let L ⊆ Σω. Then the following holds:

a) L is deterministically E-recognizable ⇔ the complement language Σω \ L is determinis-
tically A-recognizable.

b) L is deteterministically Büchi recognizable ⇔ the complement language Σω \L is deter-
ministically co-Büchi recognizable.

Proof Let A = (Q,Σ, q0, δ, F ) recognize L.
a) α ∈ Σω \ L ⇔ F is never reached during the unambiguous run ρ of A on α

⇔ Only states from Q \ F are assumed
during the unambiguous run ρ of A on α.

Thus A� := (Q,Σ, q0, δ, Q \ F ) A-accepts Σω \ L. “⇐” can be shown analogously.

b) α ∈ Σω \ L ⇔ F is visited only finitely often
during the unambiguous run ρ of A on α

⇔ from some point onwards only states in Q \ F are assumed.
Thus A� = (Q,Σ, q0, δ, Q \ F ) co-Büchi accepts Σω \ L. “⇐” can be shown
analogously.

�
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Theorem 3.27. Let L ⊆ Σω.

a) L deterministically E-recognizable ⇒ L is deterministically Büchi recognizable.

b) The converse does not hold in general.

Proof

a) Given A = (Q,Σ, q0, δ, F ) construct a deterministic Büchi automaton by adding a state
qf . We are going to “divert” all transitions to F to the newly created state qf . We
define a new transition function δ�:

δ�(q, a) = δ(q, a) if q �∈ F
δ�(q, a) = qf if q ∈ F

δ�(qf , a) = qf

Set B := (Q ∪ {qf}, Σ, q0, δ
�, {qf}). Then the new automaton B Büchi accepts the

ω-word α iff A E-accepts α.

b) �: Consider L = {α ∈ Bω | 1 appears infinitely often in α}. A deterministic Büchi
automaton which recognizes this language could look like this:

0 1

0

1

Assume: A deterministic E-automaton A recognizes L. According to Theorem 3.25
L = U ·Σω for a regular U ⊆ Σ∗. Since L is nonempty, U is also nonempty. Let u ∈ U .
Then u0ω ∈ U · Σω but u0ω /∈ L.

�

Lemma 3.28. There are languages which separate the above mentioned language classes:

1. B∗ · 1 · Bω is E-recognizable, but not A-recognizable.

2. {0ω} is A-recognizable but not E-recognizable.

3. (0∗1)ω is Büchi recognizable but not co-Büchi recognizable.

4. B∗0ω is co-Büchi recognizable but not Büchi recognizable.

Note that {0ω} = Bω \ (B∗ · 1 · Bω), B∗0ω = Bω \ (0∗1)ω.

Proof

1. E-recognizability is clear.
0

1

0,1

Assume B∗ · 1 · Bω is A-recognizable, say by A with n states.

Consider A on 0n10ω; all states of the run are final. Before input letter 1 there is a
state repetition (loop of final states). So with this loop A also accepts the input word
0ω, contradiction.
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2. {0ω} being A-recognizable but not E-recognizable follows from the Complement Lemma,
since {0ω} = Bω \ (B∗ · 1 · Bω).

0

1

0,1

3. (0∗1)ω being Büchi recognizable was shown for Theorem 3.27(b). It is easy to show that
this language is not co-Büchi recognizable

4. B∗0ω being co-Büchi recognizable but not Büchi recognizable then follows from the
Complement Lemma and 3.

�

Theorem 3.29. (Hierarchy Theorem) The following diagram of inclusions holds for the
classes of ω-languages that can be recognized by deterministic automata with E-, A-, Büchi,
and co-Büchi acceptance conditions:

regular ω–languages

det.
A–recognizable

det.

det.

det.
co–Büchi recognizable

E–recognizable

Büchi recognizable

Proof (Inclusions)
L is det. E-recogn. �

⇒ L is det. Büchi recogn. ⇒ L is nondet. Büchi recogn.
L is det. A-recogn.

The implication L is det. E-recognizable ⇒ L is det. Büchi recognizable was already
shown (Theorem 3.27). Show: L is deterministically A-recognizable ⇒ L is deterministically
Büchi recognizable. Consider the automaton A = (Q,Σ, q0, δ, F ), which A-recognizes L and
modify it as follows:

p q

A

F

A
�

p q
q−q0q0

F

We replace every δ(p, a) = q, where p ∈ F, q /∈ F , by δ(p, a) = q−, and add δ(q−, a) = q− for
every a ∈ Σ. Then the A-run ρ only assumes final states on α

⇔ the corresponding A�-run ρ� on α only assumes final states
⇔ (∗) the corresponding A�-run ρ� on α infinitely often assumes final states.
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For (∗): ⇐ If A� infinitely often assumes a final state, then A� follows no transition leading
out of F . Therefore A� only enters final states, i.e. A� Büchi recognizes L.

The claims

L is det. E-recognizable ⇒ �
L is det. co-Büchi recognizable,

L is det. A-recognizable ⇒
L is det. co-Büchi-recognizable ⇒ L is nondet. Büchi recognizable

will be proved in the exercises.

In order to show that these inclusions are proper, we need to consider seven different cases.
These are depicted in Figure 3.2. 4, 5, 6, and 7 have already been proved to be nonempty by

(1)
(4) (5)

(2)

(6) (7)

(3)

Figure 3.2: Seven inclusions

the languages B∗ · 1 · Bω, {0ω}, (0∗1)ω, and B∗0ω respectively in Remark 3.28.

(1) L1 := {1(0 + 1)ω} is det. E-recognizable and det. A-recognizable:

0

1

0,1

0,1

0

1

0,1

0,1

E-recognizes L1 A-recognizes L1

(2) L2 := {α ∈ Bω | 11 never occurs in α but 101 at least once}. This language is recog-
nized by the following det. Büchi automaton:

0
1 1

1
0

0

0

0,1

1

1
0

This det. Büchi automaton for L2 is at the same time the co-Büchi automaton for L2.

Assume 1: L2 is E-recognizable, say by A.

Consider A on the word 1010ω. This ω-word is accepted by the automaton. A final
state is visited not later than after the prefix 1010n. Therefore the ω-word 1010n110ω

is accepted. Contradiction.
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Assume 2: L2 is A-recognizable, say by A with n states.

Consider A on 0n1010ω. The automaton accepts, i.e. it visits final states only. Because
of the repetition of states on 0n only final states are assumed on 0ω. Thus 0ω is accepted
but 0ω �∈ L2. Contradiction.

(3) L3 := {α ∈ Bω | 00 occurs only finitely often in α, but 11 only finitely often}.
We will show in the exercises that L3 is nondeterministically Büchi recognizable but
neither deterministically Büchi nor deterministically co-Büchi recognizable.

�

3.7 Deciding the Level of Languages

For a given regular ω-language L (defined by, say, a Muller automaton) one can decide whether
L is det. Büchi recognizable or det. E-recognizable.

Let A = (Q,Σ, q0, δ,F) be a Muller automaton that has (w.l.o.g.) only reachable states.
A set S ⊆ Q is named loop if S �= ∅ and ∀s, s� ∈ S ∃w ∈ Σ+ δ(s, w) = s�. Thus loops are the
sets of states which can occur as Inf(ρ) of a run ρ. Let (w.l.o.g.) F consist of loops only.

Definition 3.30. Call F closed under reachable loops iff each loop S � reachable from a loop
S ∈ F also belongs to F . Call F closed under superloops iff each loop S � ⊇ S for a loop
S ∈ F also belongs to F .

F1 := {S ⊆ Q | S is a loop, S is reachable from a loop in F}
F2 := F ∪ {F ∪ E | F ∪ E is a loop with at least one state more than in F ∈ F}

= “proper superloop of F-loops”

Remark 3.31.

1. F is closed under reachable loops iff F = F1.

2. F is closed under superloops iff F = F2.

3. Each superloop of an F-loop is also reachable from an F-loop; so if F is closed under
reachable loops then it is also closed under superloops. So obviously F ⊆ F2 ⊆ F1 holds.

Theorem 3.32. (Landweber’s Theorem)

a) F = F1 ⇔ L(A) is deterministically E-recognizable.

b) F = F2 ⇔ L(A) is deterministically Büchi recognizable.

Proof of a)

⇒ Let F = F1. Define the E-automaton A� = (Q,Σ, q0, δ,
�F).

A accepts α ⇐⇒ A eventually stays in a loop S ∈ F1 on α
DefF1⇐⇒ at some point A reaches a loop from F1 on α
⇐⇒ A� E-accepts α.

Thus A and A� are equivalent.
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⇐ Let the deterministic E-automaton B recognize L(A), w.l.o.g. let L(A) �= ∅.
Show: F1 ⊆ F
Consider q ∈ S ∈ F . Show that all loops reachable from q are already in F .

Choose u ∈ Σ∗ with δA(q0, u) = q. Choose γ ∈ Σω, so that A on uγ assumes the loop
S. Since S ∈ F , uγ ∈ L(A) holds. The automaton B at some time reaches a final state
on uγ, say after uv. In A extend uv with w so that δA(q0, uvw) = q.

Let S� be a loop, reachable from q, say via the input word uvwγ �. Since this ω-word
has got the prefix uv, B accepts uvwγ �. Therefore A also accepts uvwγ �. Thus the loop
S� is also in F . �

Proof of b)

⇒ Let F = F2.

A accepts α
DefF2⇐⇒ A eventually assumes a superloop of an F-loop on α.

Construct a Büchi automaton A� with the state set Q × 2Q and start state (q0, ∅).
The automaton accumulates the visited states in (q, R) until a F-loop is reached or
outnumbered. Then we reset R := ∅. The final states are all (q, ∅). So

A� accepts α

iff of input α, A infinitely often passes through loops S � ⊇ S where S ∈ F
iff (since only finitely many such S � exist) for some S � ⊇ S with S ∈ F , precisely the

states of S� are visited infinitely often

iff (since F is closed under superloops) for some S ∈ F , precisely the states of S are
visited infinitely often

iff A accepts α.

⇐ Let the det. Büchi automaton B with final state set F recognize L(A).

Show: The system of accepting loops of A is closed under superloops (F2 ⊆ F).

So we have to find α ∈ L(A) which finally lets A cycle through S �. For that matter pick
q ∈ S, reached by A via w. Continue w by γ such that A loops through S and hence
accepts. So B on wγ infinitely often visits F , say first after wu1. Continuation via v1

through S leads A back to q, then a travel through the superloop S � via x1 again back
to q.

Repetition yields wu1v1x1u2v2x2 . . . such that B assumes a final state after each ui; so
A accepts, and due to the xi, A visits the S �-states again and again. �

3.8 Staiger-Wagner Automata

For a run ρ ∈ Qω let Occ(ρ) := {q ∈ Q | ∃i : ρ(i) = q}. Guaranty and safety conditions can
be described with Occ(ρ).
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Guaranty condition: ∃iρ(i) ∈ F ⇔ Occ(ρ) ∩ F �= ∅

Safety condition: ∀iρ(i) ∈ F ⇔ Occ(ρ) ⊆ F

Definition 3.33. A Staiger-Wagner automaton (SW-automaton) is of the form A = (Q,Σ, q0, δ, Acc)
with Q,Σ, q0, δ as defined earlier and Acc is a family F of sets of states (Notation: F =
{F1, . . . , Fk}, Fi ⊆ Q).

A accepts α :⇔ Occ(ρ) ∈ F (i.e. Occ(ρ) = F1 or . . . or Occ(ρ) = Fk)
holds for the unambiguous run ρ of A on α.

Idea: The Staiger-Wagner condition grasps options for state sets in accepting runs.

Remark 3.34. The accepting component F of a Staiger-Wagner automaton only needs to
include sets F which consist of

• a strongly connected component (SCC) P ,

• a path from q0 to P .

Remark 3.35. Deterministic E- and A-automata are special cases of SW-automata.

Proof

a) Let A = (Q,Σ, q0, δ, F ) be an E-automaton. Then the SW-automaton A� = (Q,Σ, q0, δ,F)
with F = {P ⊆ Q | P ∩ F �= ∅} is equivalent to A.

b) Let A be an A-automaton as above. Then the SW-automaton A�� = (Q,Σ, q0, δ,F �) with
F � = {P ⊆ Q | P ⊆ F} is equivalent to A.

�

Question: Why is it not sufficient to define the SW-automaton as A�� = (Q,Σ, q0, δ, {F})?
That would not be correct, because then a visit to every state in F would be mandatory,
which is not always necessary.

Theorem 3.36. The acceptance conditions, made up of Boolean combinations of guaranty
conditions (or safety conditions), are exactly those which can be described by SW-conditions.

Proof Consider the state space Q.

⇐ Consider the condition Occ(ρ) ∈ F , say for F = {F1, . . . , Fk}, i.e. Occ(ρ) = F1 ∨ · · · ∨
Occ(ρ) = Fk.

Occ(ρ) = Fj is equivalent to
�

q∈Fj

∃iρ(i) = q� �� �∧
�

q∈Q\Fj

¬ ∃iρ(i) = q� �� �
∃iρ(i) ∈ {q} ∃iρ(i) ∈ {q}

We obtain a Boolean combination of guaranty conditions of the form ∃iρ(i) ∈ {q}.

⇒ Consider a Boolean combination of guaranty conditions ∃ρ(i) ∈ Pk (or Occ(ρ) ∩ Pk �= ∅)
for suitable sets Pk ⊆ Q. The DNF yields disjunction of conditions of the following kind
(we denote the jth element of the disjunction with (∗)j):

Occ(ρ)∩Pj1 �= ∅∧ · · ·∧Occ(ρ)∩Pjmj �= ∅∧Occ(ρ)∩Pjmj+1
= ∅∧ · · ·∧Occ(ρ)∩Pjnj = ∅

Call F ⊆ Q good for the index j, if F , substituted for Occ(ρ), fulfills the condition (∗)j .
Set F := {F ⊆ Q | F is good for an index j}. The SW-automaton with this F accepts
iff the given Boolean combination is fulfilled.
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�

Example 3.37. Let L�
4 = {α ∈ Bω | 11 never occurs in α, or 101 occurs ≥ one time}. We

want to define the acceptance condition of A, so that L�
4 is recognized.

d e

a b c

0
1 1

0

1

0
0

0,1

1

A has got the following properties:

• If 101 occurs, then e is reached.

• If 101 does not occur, then the occurence of 11 is signaled by reaching c.

So we need to require that either e is visited or that c is never visited. Thus the system F of
accepting sets precisely contains {a}, {a, b, d}, {a, b, d, e}, {a, b, c, d, e}. �

Remark 3.38. There are SW-recognizable languages which cannot be recognized by a SW-
automaton with only one set in its accepting component.

Before proving the remark we give an example for which the reduction to an accepting com-
ponent {F} succeeds. Let Σ = {a, b, c}, L = {α ∈ Σω | b or c occur in α}.

3

1

2

a

a

a
b

b

b

c

cc
F = {{1, 2}, {1, 3}, {1, 2, 3}}

In this case there are more than just one set F . But another SW-automaton only requires an
simpler F :

1 2

a a,b,c
b,c F = {{1, 2}}

Proof of Remark 3.38 Consider L = {0ω, 1ω}.

1

2

3

4
0 1

01

0

1

0,1
F = {{1, 2}, {1, 3}}

Assume: The SW-automaton A = (Q, B, q0, δ, {F}) recognizes L, say with n states. Consider
the run ρ0 on 0ω, which visits exactly the F -states. After 0n, p ∈ F is reached, and every
state that is visited on 0ω has already been visited. 1ω is also accepted. Therefore exactly
the F -states are visited, i.e. also p. From the state p := δ(q0, 0

n) on the word 1ω a subset of
F is visited. Consider 0n1ω. For this word precisely F is visited and therefore the word is
accepted. Contradiction. �

Theorem 3.39. (Staiger, Wagner 1977) An ω-language L ⊆ Σω is SW-recognizable iff it
is deterministically Büchi recognizable and deterministically co-Büchi recognizable.
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From Staiger-Wagner to Büchi Proof idea: Given a Staiger-Wagner automaton with
state-set Q and acceptance component F = {F1, . . . , Fk}, we introduce an automaton A�

with state space Q × 2Q.
In the first component, A� simulates A. In the second component, A� accumulates the

visited states. If this set coincides with some Fi, the state is declared final. Formally, a state
(q, R) is declared final in A� if for some i we have R = Fi. We show

A accepts α iff A� Büchi-accepts α iff A� co-Büchi-accepts α.

A� accepts α

iff A� on α visits infinitely often a final state

iff in the run of A� on α, infinitely often there is some i such that the visited states form
the set Fi

iff for some i, infinitely often the visited states form the set Fi

iff A accepts α.

Note: Infinitely often the visited states form the set Fi iff from some point onwards the
visited states form the set Fi. So for A� one may as well use the co-Büchi condition without
changing the recognized ω-language.

For the converse we need some preparation:
Recall: A strongly connected component (SCC) of (the transition graph of) A is a maximal

strongly connected set, in other words a maximal loop of A.

Remark 3.40. The SCC’s and the singletons which do not belong to a SCC form a partial
order under the reachability relation.

Example 3.41. The numbers indicate SCCs.

2

2 2 5

1 5

3 4 5

The partial order can be illustrated as follows:

2

1 5

3 4

�

Remark 3.42. If F is closed under superloops and under subloops, then all loops of a SCC
are accepting (in F) or all rejecting (not in F).

Given a loop of F in the SCC S, S itself belongs to F (since F is closed under superloops)
and hence all loops within S belong to F (since F is closed under subloops).

Call an SCC S accepting if all its loops are accepting.
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From Büchi and co-Büchi to Staiger-Wagner Assume L is deterministically Büchi
recognizable and deterministically co-Büchi recognizable.

Let A be a Muller automaton recognizing L, say with acceptance component F . By
Landweber’s Theorem, F is closed under superloops and under subloops.

Any run ρ will finally remain within a certain SCC S.

For any SCC S, let S+ be the set of states outside S and reachable from S by a single
transition.

The run ρ will eventually stay in S if some state of S is visited in ρ but no state of S+

is visited in ρ. So the Muller automaton A accepts α iff the run ρ of A on α satisfies the
following:

ρ reaches an accepting SCC S but does not visit one of the states in S+.

So we may change the acceptance condition to the Staiger-Wagner condition with the following
system F �:

R ∈ F � :⇔ for some accepting SCC S, R ∩ S �= ∅
but R ∩ S+ = ∅

�

3.9 Parity Conditions

In a Muller automaton the accepting loops are enumerated (in an acceptance component
F). In a Rabin automaton the accepting loops are fixed by “bounds” (S is accepting iff S
intersects some Fi but is disjoint from the corresponding Ei). Can one fix the accepting loops
by a condition on their individual states? We use a “coloring” of states by numbers:

Definition 3.43. A coloring of Q is a function c : Q → {0, . . . , k}. For a run ρ let c(ρ) be
the sequence of associated colors:

c(ρ) = c(ρ(0))c(ρ(1)) . . .

Definition 3.44. (Weak and Strong Parity Automata) A (deterministic) parity automaton
is an ω-automaton of the form A = (Q,Σ, q0, δ, c), where the acceptance component is a
coloring c : Q → {0, . . . , k} for some natural number k.

A weak parity automaton is a parity automaton where a

run ρ is successful if the maximal color occurring in ρ is even
(formally: max(Occ(c(ρ))) is even).

A strong parity automaton (sometimes just “parity automaton”) is a parity automaton
where a

run ρ is successful if the maximal color occurring infinitely often in ρ is even
(formally: max(Inf(c(ρ))) is even).
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Example 3.45. (Special cases)
An E-automaton with state set Q and final state set F amounts to a weak parity automa-

ton with a coloring c : Q → {1, 2}:

c(q) =

�
1 for q �∈ F

2 for q ∈ F

A Büchi automaton can be presented similarly as a strong parity automaton with the same
coloring.

An A-automaton (Q and F as before) amounts to a weak parity automaton with coloring
c : Q → {0, 1}:

c(q) =

�
0 for q ∈ F

1 for q �∈ F

�

Lemma 3.46. Every deterministic parity automaton is equivalent to a deterministic Rabin
automaton.

Proof Given the parity automaton A = (Q,Σ, q0, δ, c) with c : Q → {0, . . . , k}, w.l.o.g. let k
be odd. We write Ci = {q | c(q) = i}.

We define the sets F0, E0, . . . , Fk, Ek according to the following scheme:

C0 C1 C2 C3 C4 C5

E1

F0

E0

F1

F2

E2

thus Fj = {q ∈ Q | c(q) ≥ 2j}
�

j = 0 . . . k
Ej = {q ∈ Q | c(q) ≥ 2j + 1}

The maximal infinitely often visited color is then = 0, if Inf(ρ) ∩ F0 �= ∅, Inf(ρ) ∩ E0 = ∅,
= 1, if Inf(ρ) ∩ F1 = ∅, Inf(ρ) ∩ E1 �= ∅,
...

Therefore F0 ⊇ E0 ⊇ F1 ⊇ E1 ⊇ · · · ⊇ Fk ⊇ Ek holds and

max(Inf(c(ρ))) even ⇔
r�

j=0

(Inf(ρ) ∩ Fj �= ∅ ∧ Inf(ρ) ∩ Ej = ∅).



3.9. PARITY CONDITIONS 59

We obtain an equivalent Rabin automaton B = (Q,Σ, q0, δ, Ω) (Ω = {(E0, F0), . . . , (Ek, Fk)}).
Because of the inclusion chain Fi, Ei also called Rabin chain automaton with accepting com-
ponent Ω = ((E0, F0), . . . , (Er, Fr)). �

Aim:

• Weak parity automata have the same expressive power as Staiger-Wagner automata.

• Strong parity automata have the same expressive power as Muller automata.

From Parity to Staiger-Wagner and Muller Consider an automaton with coloring
c : Q → {0, . . . , k}. Let Ci = {q ∈ Q | c(q) = i}.

The weak parity condition is a Boolean combination of E-acceptance conditions for a run
ρ: �

j even

∃i
�
ρ(i) ∈ Cj ∧ ¬∃iρ(i) ∈ Cj+1 ∪ . . . ∪ Ck

�

Similarly the strong parity condition is a Boolean combination of Büchi acceptance conditions.
Consequences:

• A weak parity automaton can be simulated by a Staiger-Wagner automaton.

• A strong parity automaton can be simulated by a Muller automaton.

Theorem 3.47. (From Staiger-Wagner to weak parity) For a Staiger-Wagner automaton
one can construct an equivalent weak parity automaton.

Proof Let A = (Q,Σ, q0, δ,F) be a Staiger-Wagner automaton. We define an equivalent
weak parity automaton A� = (Q�, Σ, q�0, δ

�, c). Set Q� = Q × 2Q, q�0 = (q0, {q0}).
Idea: Collect the visited states in the second component. Define δ �((p,R), a) = (δ(p, a), R∪

{δ(p, a)}).
The coloring c is defined by

c(p, R) =

�
2 · |R| if R ∈ F
2 · |R|− 1 if R �∈ F

Colors of a run increase monotonically, and from some point onwards stay constant (when
all visited states have been seen at least once).

The maximal color is even iff the set of visited states belongs to F . So A� is equivalent to
A. �

Theorem 3.48. (From Muller automata to parity automata) For a Muller automaton one
can construct an equivalent strong parity automaton.

Proof Idea: Extend the idea of “recording past states”. Remember not only the set of visited
states, but also the order of their last occurrence. The data structure for this information
is called “Order vector” (McNaughton 1965), “Latest appearance record”, short “LAR”
(Gurevich, Harrington 1982).

The vector has the current state on position 1, the next previous state on position 2, etc.
The position where the current state was taken from is marked as “hit position”.

The complete proof will be given later on.
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Example 3.49. Q = {1, 2, 3, 4}

run ρ: LAR-run ρ�: underlined: hit
1 1234
3 3124
4 4312
2 2431
3 3241
1 1324
3 3124
3 3124
1 1324

�

3.10 Exercises

Exercise 3.1. Consider the Büchi automaton A = ({0, 1, 2}, {a, b}, 0, Δ, {1}) with Δ given
by the following transition table:

a b

0 0,1 0
1 2
2 2 1

Construct, using the Safra construction, an equivalent deterministic Muller automaton.

Exercise 3.2. Let L ⊆ Σω be an ω-language. We define the right congruence ∼L⊆ Σ∗ × Σ∗

by
u ∼L v iff ∀α ∈ Σω : uα ∈ L ⇔ vα ∈ L.

(a) Show that every deterministic Muller automaton recognizing L needs at least as many
states as there are ∼L equivalence classes.

(b) Show that there is a non-regular ω-language L such that ∼L has finite index. (So the
Nerode characterization of regular languages does not generalize to ω-languages.)
Hint: Let β be an ω-word which is not ultimately periodic and consider

L(β) := {α ∈ Σω | α and β have a common suffix}.

Exercise 3.3. Starting from Exercise 3.2 define a family of ω-languages (Ln)n≥2 with the
following properties.

1. Ln is recognized by a nondetermistic Büchi automaton with O(n) states.

2. Every deterministic Muller automaton that recognizes Ln has got at least 2n states.

Exercise 3.4. Let UP be the set of all ω-words over {0, 1} that are ultimately periodic.
Show that UP is not regular.

Exercise 3.5. Show that there is a regular ω-language L ⊆ {a, b}ω, which cannot be recog-
nized by a deterministic Muller automaton A = (Q, {a, b}, q0, δ,F) with |F| = 1.
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Exercise 3.6. Let A1 = (Q1, Σ, q1
0, δ1, F1) and A2 = (Q2, Σ, q2

0, δ2, F2) be deterministic co-
Büchi automata.

(a) Show that the product automaton A of A1 and A2 with final states (F1×Q2)∪ (Q1×F2)
does in general not recognize the language L(A1) ∪ L(A2).

(b) Correct the construction from (a) such that the new automaton A� recognizes L(A1) ∪
L(A2).

Exercise 3.7. Let L ⊆ Σω be an ω-language. Show:

(a) If L is deterministically A-recognizable, then L is deterministically co-Büchi recogniz-
able.

(b) If L is deterministically E-recognizable, then L is deterministically co-Büchi recogniz-
able.

(c) If L is deterministically co-B”uchi recognizable, then L is nondeterministically Büchi
recognizable.

Exercise 3.8. Consider the ω-language

L3 := {α ∈ {0, 1}ω | α contains 00 infinitely often, but 11 only finitely often}.

(a) Show that L3 is Büchi recognizable.

(b) Show that L3 is neither recognizable by a deterministic Büchi automaton nor by a deter-
ministic co-Büchi automaton.

Exercise 3.9. Let U ⊆ Σ∗ be a finite language, and L := U · Σω.

(a) Show that L is both E- and A-recognizable.

(b) Show the converse: If an ω-language L ⊆ Σω is both E- and A-recognizable then there is
finite language U ⊆ Σ∗ such that L = U · Σω.

This shows that bounded specifications are captured by ω-languages which are both E- and
A-recognizable.
Hint: For (b) it is useful to show that the complement of L is also E-recognizable. Then
consider, for a proof by contradiction, Σ∗ as a |Σ|-branching tree and apply König’s Lemma.

Exercise 3.10. The inclusion diagram shows the LTL-definable languages inside the hierar-
chy of ω-languages.

A

LTL

E

regular

det. co-Büchidet. Büchi
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(a) Show that the languages L4 := B∗1Bω, L5 := {0ω}, L6 := (0∗1)ω, and L7 := B∗0ω are
LTL-definable, i.e. these languages are located in the inner part of the diagram.

(b) Partly verify the inclusion diagram by providing ω-languages for the two language classes
marked by dots.
Hint: Find counting versions of the appropiate LTL-definable ω-languages mentioned in
(a).

Exercise 3.11.

(a) Construct Staiger-Wagner automata accepting the ω-languages

L1 := {α ∈ {a, b, c}ω | if a occurs in α then b occurs later on}

and
L2 := {α ∈ {a, b, c}ω | α contains aa and before that

b only occurs in blocks of length ≤ 2}.

(b) Let A1 = (Q1, Σ, q1
0, δ1,F1) and A2 = (Q2, Σ, q2

0, δ2,F2) be Staiger-Wagner automata.
Construct the Staiger-Wagner product automaton A3 recognizing L(A1)∪L(A2). Verify
your construction.

Exercise 3.12. Show that for every n ≥ 1 there is an ω-language Ln which can be recognized
by a Staiger-Wagner automaton with n state sets as its accepting component. Also show that
the language cannot be recognized by a Staiger-Wagner automaton with less than n state sets
in its accepting component.

(a) For that matter use the alphabet Σn = {a1, . . . , an} and the language Ln = aω
1 +· · ·+aω

n.

(b) Extend the result of (a) to languages over an alphabet with two elements.

Exercise 3.13. Show that the language, which is defined by the ω-regular expression (0∗1)ω,
is not Staiger-Wagner recognizable. (Consider, assuming that such an SW-automaton with n
states exists, the ω-word (0n1)ω in order to derive a contradiction.)

Exercise 3.14. Directly construct an equivalent deterministic Büchi automaton B for a
Staiger-Wagner automaton A = (Q,Σ, q0, δ,F). Hint: In order to simulate A, B needs to
memorize the visited states.

Exercise 3.15. A set F ⊆ 2Q is closed under subloops if every subloop S � ⊆ S of a loop
S ∈ F also belongs to F . Let A = (Q,Σ, q0, δ,F) be a Muller automaton. Show that

L(A) is co-Büchi recognizable ⇐⇒ F is closed under subloops.

Exercise 3.16. Decide whether the language recognized by the following Muller automaton
is E-recognizable or Büchi recognizable. Let F = {{2}, {1, 2, 3}}.

2

b

a

1

a

b

3
a

b

If your answer is positive specify suitable automata with E- and Büchi acceptance conditions.
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Exercise 3.17.

(a) Find an ω-language that is recognized by a parity automaton with colorset {1, 2, 3} but
not by a parity automaton with a colorset {1, 2}. (Hint: Landweber’s Theorem 3.32 for
(deterministic) Büchi automata).

(b) Propose a family Ln of ω-languages, such that Ln is recognized by a parity automaton
with colorset {1, . . . , n} but not by parity a automaton with color set {1, . . . , n − 1}.

Exercise 3.18.

(a) Present (by direct construction) weak parity automata recognizing the ω-languages L1, L2

from Exercise 3.11.

(b) Show that L1 cannot be recognized by a weak parity automaton with only two colors.


