Problem Set I

1. Suppose a vector $v \in \mathbf{R}^{\mathbf{3}}$ has coordinates $(1,1,1)$ w.r.t the basis $(1,1,0),(1,0,1),(0,1,1)$, Find its coordinates with respect to the basis $(1,0,0),(1,1,0),(1,1,1)$. Find the matrix of basis translation between these two bases.
2. Consider the vector space of all polynomials of degree at most n over \mathbf{R}. Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+$ $\cdots+a_{n-1} x^{n-1}$. Find the co-ordinates of $f(x)$ over the basis $\left[1,(x-t),(x-t)^{2}, \cdots,(x-t)^{n-1}\right]$. (Hint: Evaluate $\frac{d^{k}}{d x^{k}} f(x)$ at $x=t$.)
3. Let p_{1}, p_{2}, \cdots be a listing of all primes $\left(p_{1}=2, p_{2}=3, p_{3}=5\right.$ etc.) Consider the vector space \mathbf{R} over \mathbf{Q}. (In this vector space, the vectors are real numbers and scalars are rational numbers). Show that $\left\{p_{1}, p_{2}, \cdots\right\}$ is a linearly dependent set, but the set $\left\{\log p_{1}, \log p_{2}, \log p_{2}, \cdots\right\}$ is linearly independent. (Use the fact that every natural number has a unique factorization into prime factors.)
4. Consider the linear map from $\mathbf{R}^{\mathbf{3}}$ to $\mathbf{R}^{\mathbf{2}}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{2}+x_{3}\right)$. Find the matrix of this linear transformation if the basis on either side is the standard basis. What is the matrix of the map if the basis in $\mathbf{R}^{\mathbf{2}}$ is changed to $(1,1),(1,-1)$? What is the matrix when the basis for $\mathbf{R}^{\mathbf{3}}$ is changed to $(1,1,0),(1,0,1),(0,1,1)$ and the basis of $\mathbf{R}^{\mathbf{2}}$ is the standard basis? What is the matrix of the map if the basis for $\mathbf{R}^{\mathbf{3}}$ is $(1,1,0),(1,0,1),(0,1,1)$ and basis for $\mathbf{R}^{\mathbf{2}}$ is $(1,1),(1,-1)$?
5. In the above question, find the equations to $\operatorname{img}(T)$ and $\operatorname{ker}(T)$ (assume standard basis on both sides). Find a basis for $\operatorname{ker}(T)$ and $\operatorname{Img}(T)$. Find a collection of vectors in $\mathbf{R}^{\mathbf{3}}$ whose images under T form a basis for $\operatorname{img}(T)$. What is Rank (T), Nullity (T) ?
6. Let T be a linear transformation from V to W over a field F. Let $\operatorname{Dim}(V)=n, U=N u l l \operatorname{space}(T)$. Let $\operatorname{Nullity}(T)=k$ and $\operatorname{rank}(T)=r$. Let $u_{1}, u_{2}, . ., u_{k}$ be a basis of U. Suppose we extend this set with vectors $b_{1}, b_{2}, . ., b_{r}$ to form a basis of V, is it always true that $T\left(b_{1}\right), T\left(b_{2}\right), \ldots, T\left(b_{r}\right)$ forms a basis of $\operatorname{Img}(T)$? Give a proof/counterexample.
