1. Let a, b, n be positive integers. Consider the modular equation $a x \equiv b \bmod n$. Let $d=G C D(a, n)$. Let $S=\left\{i \in \mathbf{Z}_{n}: a i \equiv b \bmod n\right\}$ be the set of all solutions of the modular equation.
2. Show that S is non-empty if and only if b is a multiple of $\operatorname{GCD}(a, n)$.
3. Show that if $x_{0} \in S$, then $x_{0}+\frac{n}{d} \in S$.
4. Show that if $S \neq \emptyset$ then $|S|=d$. (Prove that, if one solution x_{0} is found, the others must be $\left.x_{0}+\frac{n}{d}, x_{0}+\frac{2 n}{d}, \ldots.\right)$
5. For $n=24, b=9$, find all values of $a \in \mathbf{Z}_{n}$ for which the equation has a solution.
6. For $n=24, a=15, b=9$, find all elements in S.
7. For $n=24, a=10$, find all $b \in \mathbf{Z}_{n}$ for which $S \neq \emptyset$.
8. For $n=24, a=10, b=14$, find all elements in S.
9. Let n be a positive integer. Let d be a divisor of n. Let $n_{1}=\frac{n}{d}$.
10. Show that for any $i, 1 \leq i \leq n-1$, if $i=i_{1} d$ for some i_{1} satisfying $1 \leq i_{1} \leq n_{1}$ and $\operatorname{GCD}\left(n_{1}, i_{1}\right)=1$, then $\operatorname{GCD}(\bar{n}, i)=d$
11. Show that the cyclic subgroup of \mathbf{Z}_{n} (with respect to addition $\bmod n$) generated by d is the same as the cyclic subgroup generated by $k d$ if and only if $\operatorname{GCD}\left(k, n_{1}\right)=1$.
12. If j has order n_{1} in G, then show that $j=j_{1} d$ for some $1 \leq j_{1} \leq n_{1}$ satisfying $\operatorname{GCD}\left(j_{1}, n_{1}\right)=1$.
13. Find all elements all elements in \mathbf{Z}_{24} that has order 6. (Use what you proved now, don't start trial and error).
14. Let $(R,+, ., 0,1)$ be a ring. Show that $R^{*}=\{a \in R: \exists b \in R, a b=1\}$ is a group.
15. Let $(G, ., 1)$ be an Abelian group. Let H be a non-trivial subgroup of G (that is, $\emptyset \neq H \neq G)$. For any $x \in G$, let $x H=\{g \in G: \exists h \in H$ satisfying $g=x h\}$ (coset of H determined by $x)$. Let $a, b \in G$. For $x, y \in G$, we denote by $x H \oplus y H$ the set $\left\{x h_{1} y h_{2}: h_{1}, h_{2} \in H\right\}$.
16. Show that if $a b^{-1} \in H$, then $a H=b H$
17. Show that if $a H=b H$ then $a b^{-1} \in H$.
18. Show that $a H \oplus b H=a b H$.
19. Show that $|a H|=|b H|=|H|$.
20. Show that if $a H \neq b H$ then $a H \cap b H=\emptyset$.
21. Show that if $b=a^{-1}$, then $a b H=H$.
22. Define $\frac{G}{H}=\{a H: a \in G\}$. Thus each element in $\frac{G}{H}$ is a a coset. Show that $\left(\frac{G}{H}, \oplus, H\right)$ is a group. (All the ingredients to prove the result has been proven already by the previous questions. One just have to understand what exactly is to be proved!).
23. For $G=\mathbf{Z}_{24}, H=\{0,6,12,18\}$, find the inverse of each element (note that each element here is a coset) in the group $\left(\frac{G}{H}, \oplus, H\right)$.
24. Let G be an Abelian group. Let $a, b \in G$. Let $o(a)=m$ and $o(b)=n$, where $o(a)$ and $o(b)$ denote the order of the cyclic subgroups generated by a and b. Consider the set $S(a, b)=\left\{a^{i} b^{j}: i, j \in \mathbf{Z}\right\}$. Show that $S(a, b)$ is a group. What can you say about the number of elements in the group?
25. Let g be a generator of a cyclic group of n elements. Let d be a divisor of n. Let $n_{1}=\frac{n}{d}$.
26. Show that $o\left(a^{d}\right)=n_{1}$.
27. Show that for any $1 \leq k \leq n_{1}$, if $\operatorname{GCD}\left(k, n_{1}\right)=1$, then $o\left(a^{k d}\right)=n_{1}$. This tells us that there are at least $\phi\left(n_{1}\right)$ elements of order n_{1} in G (why?).
28. Show that if $o\left(a^{i}\right)=n_{1}$, then $i=i_{1} d$ for some i_{1} satisfying $\operatorname{GCD}\left(i_{1}, n_{1}\right)=1$. This tells us that there are no more elements of order n_{1} outside the elements of the form $a^{k d}$ where k satisfies $\operatorname{GCD}\left(k, n_{1}\right)=1$. From the above two cases, we conclude that there are exactly $\phi\left(n_{1}\right)$ elements of order n_{1} in G. (You must connect what is proved here with what you have proved in the Q2).
29. Conclude from the above that $\sum_{n_{1} \mid n} \phi\left(n_{1}\right)=\sum_{d \mid n} \phi(d)=n$.
30. Let n be any positive integer. Let $x \in \mathbf{Z}_{n}^{*}$. Let e be any positive integer such that $\operatorname{GCD}(e, \phi(n))=1$. Let $y=x^{e} \bmod n$.
31. Show that there exists a unique positive integer d less than $\phi(n)$ such that $e d \equiv 1 \bmod \phi(n)$.
32. Show that $y^{d} \equiv x \bmod n$. (These equations define the encryption and decryption procedures for message x of a well crypto-system - which one?).
