Problem Set III

- 1. Let R be a ring and I be an ideal in R. Show that $\frac{R}{I}$ is a ring with operations defined by (a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = ab + I
- 2. Let f be an onto homomorphism from a ring R to a ring R'. Let I = ker(f).
 - 1. Show that there is a bijective homomorphism (isomorphism) from $\frac{R}{\tau}$ to R'.
 - 2. Show that f is injective if and only if $I = \{0\}$.
 - 3. Show that if R is a field then either f = 0 or f is an isomorphism.
- 3. An ideal I in a ring R is principal if there exists an element $d \in I$ such that I = dR. That is, elements in I are obtained by multiplying each element of R with some particular element $d \in I$. Such a dsatisfying I = dR is called a **generator** of the ideal.
 - 1. Show that every ideal in \mathbf{Z} is principal.
 - 2. Let $a_1, a_2, \ldots, a_n \in R$. Show that $I = \{a_1r_1 + a_2r_2 + \cdots + a_nr_n : r_1, r_2, \ldots, r_n \in R\}$ is an ideal. This ideal is called the ideal generated by a_1, a_2, \ldots, a_n and is denoted by $I(a_1, a_2, \ldots, a_n)$.
 - 3. Consider the set R[x] of polynomials with real coefficients. Show that every ideal I is R[x] is principal. (Use the fact that Euclid's algorithm can be applied to polynomials as well).
- 4. Let V be a vector space of dimension n over a field F. Let W be a subspace of V of dimension k. Let w_1, w_2, \ldots, w_k be a basis of W. Let $v_{k+1}, v_{k+2}, \ldots, v_n$ extended w_1, w_2, \ldots, w_k to a basis of V. Consider the quotient group $\frac{V}{W}$ (Vectors form an Abelian group w.r.t addition and W is a subgroup of V). Define scalar multiplication of $\frac{V}{W}$ as $\alpha(v+W) = \alpha v + W$.
 - 1. With the definition of scalar multiplication above, show that $\frac{V}{W}$ is a vector space.
 - 2. Show that $v_{k+1} + W, v_{k+2} + W, \dots v_n + W$ is a basis of $\frac{V}{W}$. Hence conclude that $dim(\frac{V}{W}) = dim(V) dim(W)$.
- 5. Let $T: V \mapsto V'$ be an surjective linear transformation. Let W = ker(T). Show that there is a bijective map $\overline{T}: \frac{V}{W} \mapsto V'$ (define $\overline{T}(v+W) = T(v)$). Show that \overline{T} is indeed a linear transformation. Using this observation (called the homomorphism Theorem for Vector Spaces) and the previous question, deduce the rank-nullity theorem.
- 6. Let m and n be positive integers with n > m. Consider $f : \mathbf{Z}_n \mapsto \mathbf{Z}_m$ defined by $f(x) = x \mod m$. Show that f is a homomorphism if and only if m divides n. When f is a homomorphism, what is ker(f)?
- 7. Suppose m, n be positive integers.
 - 1. Show that $\mathbf{Z}_m \times \mathbf{Z}_n$ is cyclic with generator (1, 1) if and only if GCD(m, n) = 1. When
 - 2. If GCD(m, n) = 1, show that the map $f : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ defined by $f(x) = (x \mod m, x \mod n)$ is an isomorphism.
 - 3. If $GCD(m, n) \neq 1$, and f is defined as in the previous sub-question, what is ker(f)?