Problem Set III

1. Let R be a ring and I be an ideal in R. Show that $\frac{R}{I}$ is a ring with operations defined by $(a+I)+$ $(b+I)=(a+b)+I$ and $(a+I)(b+I)=a b+I$
2. Let f be an onto homomorphism from a ring R to a ring R^{\prime}. Let $I=\operatorname{ker}(f)$.
3. Show that there is a bijective homomorphism (isomorphism) from $\frac{R}{I}$ to R^{\prime}.
4. Show that f is injective if and only if $I=\{0\}$.
5. Show that if R is a field then either $f=0$ or f is an isomorphism.
6. An ideal I in a ring R is principal if there exists an element $d \in I$ such that $I=d R$. That is, elements in I are obtained by multiplying each element of R with some particular element $d \in I$. Such a d satisfying $I=d R$ is called a generator of the ideal.
7. Show that every ideal in \mathbf{Z} is principal.
8. Let $a_{1}, a_{2}, \ldots a_{n} \in R$. Show that $I=\left\{a_{1} r_{1}+a_{2} r_{2}+\cdots a_{n} r_{n}: r_{1}, r_{2}, \ldots r_{n} \in R\right\}$ is an ideal. This ideal is called the ideal generated by $a_{1}, a_{2}, \ldots a_{n}$ and is denoted by $I\left(a_{1}, a_{2}, \ldots a_{n}\right)$.
9. Consider the set $R[x]$ of polynomials with real coefficients. Show that every ideal I is $R[x]$ is principal. (Use the fact that Euclid's algorithm can be applied to polynomials as well).
10. Let V be a vector space of dimension n over a field F. Let W be a subspace of V of dimension k. Let $w_{1}, w_{2}, \ldots w_{k}$ be a basis of W. Let $v_{k+1}, v_{k+2}, \ldots v_{n}$ extended $w_{1}, w_{2}, \ldots w_{k}$ to a basis of V. Consider the quotient group $\frac{V}{W}$ (Vectors form an Abelian group w.r.t addition and W is a subgroup of $V)$. Define scalar multiplication of $\frac{V}{W}$ as $\alpha(v+W)=\alpha v+W$.
11. With the definition of scalar multiplication above, show that $\frac{V}{W}$ is a vector space.
12. Show that $v_{k+1}+W, v_{k+2}+W, \ldots v_{n}+W$ is a basis of $\frac{V}{W}$. Hence conclude that $\operatorname{dim}\left(\frac{V}{W}\right)=$ $\operatorname{dim}(V)-\operatorname{dim}(W)$.
13. Let $T: V \mapsto V^{\prime}$ be an surjective linear tranformation. Let $W=\operatorname{ker}(T)$. Show that there is a bijective map $\bar{T}: \frac{V}{W} \mapsto V^{\prime}$ (define $\left.\bar{T}(v+W)=T(v)\right)$. Show that \bar{T} is indeed a linear tranformation. Using this observation (called the homomorphism Theorem for Vector Spaces) and the previous question, deduce the rank-nullity theorem.
14. Let m and n be positive integers with $n>m$. Consider $f: \mathbf{Z}_{n} \mapsto \mathbf{Z}_{m}$ defined by $f(x)=x$ $\bmod m$. Show that f is a homomorphism if and only if m divides n. When f is a homomorphism, what is $\operatorname{ker}(f)$?
15. Suppose m, n be positive integers.
16. Show that $\mathbf{Z}_{m} \times \mathbf{Z}_{n}$ is cyclic with generator $(1,1)$ if and only if $\operatorname{GCD}(m, n)=1$. When
17. If $\operatorname{GCD}(m, n)=1$, show that the map $f: \mathbf{Z}_{m n} \mapsto \mathbf{Z}_{m} \times \mathbf{Z}_{n}$ defined by $f(x)=(x \bmod m, x \bmod n)$ is an isomorphism.
18. If $\operatorname{GCD}(m, n) \neq 1$, and f is defined as in the previous sub-question, what is $\operatorname{ker}(f)$?
