Problem Set IV

1. If p, q are prime numbers such that $Z_{p q}^{*}$ is cyclic, what are the possible values for p and q ?
2. Let p, q be odd prime numbers. Characterize all natural numbers which are roots of the equation $x^{2}=1$ $\bmod p$ in terms of p and q using Chinese remainder theorem.
3. Find all ideals in the ring \mathbf{Z}_{30}. For each ideal I, give an example for a ring homomorphism from \mathbf{Z}_{30} (to any ring) which has I as the kernel.
4. Let R be any ring. the characterisitic of the ring is defined as the least positive integer k such that $1+1+\cdots+1$ (k times) is zero. Show that the characterisitic of a finite field must be prime. Give an example for an infinite field whose characterisitic is not a prime.
5. Consider the map $f: \mathbf{Z}_{6} \times \mathbf{Z}_{4} \mapsto \mathbf{Z}_{12}$ defined by $f(x, y)=x+y \bmod 12$. Is f a ring homomorphism? If so, find the kernel, image and all cosets of the kernel.
6. Consider the map $f: \mathbf{Z}_{12} \mapsto \mathbf{Z}_{6} \times \mathbf{Z}_{4}$ defined by $f(x)=(x \bmod 6, x \bmod 4)$. Is f a ring homomorphism? If so, find the kernel, image and all cosets of the kernel.
7. If m, n and postive numbers such that $\operatorname{GCD}(m, n) \neq 1$. Show that the map $f: Z_{m n} \mapsto \mathbf{Z}_{m} \times \mathbf{Z}_{n}$ defined by $f(x)=(x \bmod m, x \bmod n)$ is a homomorphism, but not an isomorphism. Find the kernel and image of f.
8. Find all generators of \mathbf{Z}_{25}^{*}.
9. Find all $a \in \mathbf{Z}_{25}^{*}$ such that the Miller Rabin test with a chosen as the random test element returns composite.
10. Let p, q be distinct odd prime numbers. Let $n=p q$. Let $p-1$ divide $n-1$, but $q-1$ does not divide $n-1$. Characterize all $a \in \mathbf{Z}_{p}^{*} \times \mathbf{Z}_{q}^{*}$ such that $a^{n-1} \equiv 1 \bmod n$.
11. Let p, q, r be prime numbers. Let g_{1}, g_{2}, g_{3} be generators of $\mathbf{Z}_{p}^{*}, \mathbf{Z}_{q}^{*}$ and \mathbf{Z}_{r}^{*} respectively. What will be the order of the element $\left(g_{1}, g_{2}, g_{3}\right) \in \mathbf{Z}_{p}^{*} \times \mathbf{Z}_{q}^{*} \times \mathbf{Z}_{r}^{*}$ (in terms of p, q and $\left.r\right)$?
12. Find all generators $g \in \mathbf{Z}_{11}^{*}$ that are not generators for \mathbf{Z}_{121}^{*}.
13. Consider the homomorphism $f(x)=x \bmod 6$ from \mathbf{Z}_{24} to \mathbf{Z}_{6}. Let $a \in \mathbf{Z}_{24}$ and $b \in \mathbf{Z}_{6}$ satisfy $f(a)=b$. Characterize all solutions for $f(a)=b$.
14. Let p be an odd prime. Let g be a generator of $\mathbf{Z}_{p^{2}}^{*}$. Show that g is a generator of $\mathbf{Z}_{p^{3}}^{*}$ as well.
15. Show that a Carmichael number must have at least 3 distinct prime factors.
16. Let α, β be non-zero distinct real numbers. Let $f(x)=a \bmod (x-\alpha)$ and $f(x)=b \bmod (x-\beta)$. Find the Chinese remainder theorem solution for $f(x)$ in terms of α, β and f.
17. Using Chinese remainder theorem, find the polynomial $f(x)$ of minimum degree satisfying $f(x)=1$ $\bmod (x-2), f(x)=2 \bmod (x-3)$ and $f(x)=3 \bmod (x-4)$.
18. If p is an odd prime such that $p^{2} \mid n$, show that n is not a Carmichael number.
