Problem Set IV

- 1. If p, q are prime numbers such that Z_{pq}^* is cyclic, what are the possible values for p and q?
- 2. Let p, q be odd prime numbers. Characterize all natural numbers which are roots of the equation $x^2 = 1 \mod p$ in terms of p and q using Chinese remainder theorem.
- 3. Find all ideals in the ring \mathbf{Z}_{30} . For each ideal I, give an example for a ring homomorphism from \mathbf{Z}_{30} (to any ring) which has I as the kernel.
- 4. Let R be any ring. the characterisitic of the ring is defined as the least positive integer k such that $1 + 1 + \cdots + 1$ (k times) is zero. Show that the characterisitic of a finite field must be prime. Give an example for an infinite field whose characterisitic is not a prime.
- 5. Consider the map $f : \mathbb{Z}_6 \times \mathbb{Z}_4 \mapsto \mathbb{Z}_{12}$ defined by $f(x, y) = x + y \mod 12$. Is f a ring homomorphism? If so, find the kernel, image and all cosets of the kernel.
- 6. Consider the map $f : \mathbf{Z}_{12} \mapsto \mathbf{Z}_6 \times \mathbf{Z}_4$ defined by $f(x) = (x \mod 6, x \mod 4)$. Is f a ring homomorphism? If so, find the kernel, image and all cosets of the kernel.
- 7. If m, n and postive numbers such that $GCD(m, n) \neq 1$. Show that the map $f : Z_{mn} \mapsto \mathbf{Z}_m \times \mathbf{Z}_n$ defined by $f(x) = (x \mod m, x \mod n)$ is a homomorphism, but not an isomorphism. Find the kernel and image of f.
- 8. Find all generators of \mathbf{Z}_{25}^* .
- 9. Find all $a \in \mathbb{Z}_{25}^*$ such that the Miller Rabin test with a chosen as the random test element returns composite.
- 10. Let p, q be distinct odd prime numbers. Let n = pq. Let p 1 divide n 1, but q 1 does not divide n 1. Characterize all $a \in \mathbb{Z}_p^* \times \mathbb{Z}_q^*$ such that $a^{n-1} \equiv 1 \mod n$.
- 11. Let p, q, r be prime numbers. Let g_1, g_2, g_3 be generators of $\mathbf{Z}_p^*, \mathbf{Z}_q^*$ and \mathbf{Z}_r^* respectively. What will be the order of the element $(g_1, g_2, g_3) \in \mathbf{Z}_p^* \times \mathbf{Z}_q^* \times \mathbf{Z}_r^*$ (in terms of p, q and r)?
- 12. Find all generators $g \in \mathbf{Z}_{11}^*$ that are not generators for \mathbf{Z}_{121}^* .
- 13. Consider the homomorphism $f(x) = x \mod 6$ from \mathbf{Z}_{24} to \mathbf{Z}_6 . Let $a \in \mathbf{Z}_{24}$ and $b \in \mathbf{Z}_6$ satisfy f(a) = b. Characterize all solutions for f(a) = b.
- 14. Let p be an odd prime. Let g be a generator of $\mathbf{Z}_{n^2}^*$. Show that g is a generator of $\mathbf{Z}_{n^3}^*$ as well.
- 15. Show that a Carmichael number must have at least 3 distinct prime factors.
- 16. Let α, β be non-zero distinct real numbers. Let $f(x) = a \mod (x-\alpha)$ and $f(x) = b \mod (x-\beta)$. Find the Chinese remainder theorem solution for f(x) in terms of α, β and f.
- 17. Using Chinese remainder theorem, find the polynomial f(x) of minimum degree satisfying $f(x) = 1 \mod (x-2)$, $f(x) = 2 \mod (x-3)$ and $f(x) = 3 \mod (x-4)$.
- 18. If p is an odd prime such that $p^2|n$, show that n is not a Carmichael number.