Problem Set V

1. If A is a complex $n \times n$ matrix such that $\operatorname{det}(A)=0$, then, show that the function $f: \mathbf{C}^{n} \times \mathbf{C}^{n} \mapsto \mathbf{C}$ defined by $f(u, v)=u^{T} A \bar{v}$ does not define an inner product. Which inner product axiom is violated in this case?
2. In R^{2} consider the positive definite matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Consider the inner product in \mathbf{R}^{2} defined by A.
3. Run Gram Schmidt orthogonalization (starting from the standard basis) to find a basis that is orthonormal for the inner product.
4. Find the $L U$ decomposition of A.
5. Find the coordinates of the vector $[1,1]^{T}$ with respect to the basis you have found.
6. [Bessel's inequality] Let $b_{1}, b_{2}, \ldots b_{k}$ be orthogonal unit vectors in an n dimensional complex inner product space V with inner product function (). Let $v \in V$. Show that $\|v\|^{2} \geq \sum_{i=1}^{k} P_{i}(v)^{2}$ where $P_{i}(v)=\left(v, b_{i}\right) b_{i}$ is the projection of v along the direction b_{i}.
7. If U is an $n \times n$ unitary matrix, show that the columns of A form an orthonormal basis of \mathbf{C}^{n}.
8. Let $d=\left[d_{1}, d_{2}, \ldots d_{n}\right]^{T}\left(d\right.$ is a column vector) be a unit vector in \mathbf{R}^{n}. Show that the $n \times n$ matrix $D=d d^{T}$ satisfy the property that for every vector $y=\left[y_{1}, y_{2}, \ldots y_{n}\right]^{T}$ in $\mathbf{R}^{n}, A y$ gives the orthogonal projection of y along the direction d with respect to the standard inner product in \mathbf{R}^{n}.
9. Consider \mathbf{R}^{3} with the standard inner product. Use the previous question to find the matrix of the orthogonal projection operator (with respect to the standard basis) that project each vector to
10. The direction along the direction determined by $[1,1,1]^{T}$.
11. The subspace that is orthogonal to the direction defined by $[1,1,1]^{T}$.
12. The plane $x+y+z=0$.
13. Let $b_{1}, b_{2}, \ldots b_{n}$ be an orthonormal basis of a complex vector space C. Find the matrix (w.r.t the basis $b_{1}, b_{2}, \ldots b_{n}$) of the orthogonal projection operator that projects each vector on to the subspace spanned by b_{1} and b_{2}.
14. Find the distance from the vector $[5,5,5]$ to the plane defined by $x+2 y+3 z=0$?
15. Consider \mathbf{R}^{2} with the standard inner product. Let T be an operator in \mathbf{R}^{2} whose matrix w.r.t the standard basis is $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Find an orthonormal basis of \mathbf{R}^{2} with respect to which the matrix of T becomes a diagonal matrix?
16. Let V be a complex inner product space of dimension n. Let $P_{1}, P_{2}, \ldots P_{k}$ be operators on V satisfying a) $P_{i}^{2}=P$ for all i and j. b) For each $u, v \in V$ and $i, j,(i \neq j),\left(P_{i}(u), P_{j}(v)\right)=0$. Let $P=\lambda_{1} P_{1}+\lambda_{2} P_{2}+\cdots+\lambda_{k} P_{k}$ for real scalars $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$. Show that for any vectors $u, w \in V$, P satisfies $(u, P v)=(P u, v)$.
