
CS 6101 MFCS Final Exam, Nov. 2017. Name:

Answer STRICTLY in the space provided. Answers written elsewhere may not be valued.
Brief and precise justification to your answer to each question is ABSOLUTELY NECESSARY and shall be
given on the reverse side of the sheet containing the question.

1. 2Let p be an odd prime. How many solutions are there for the equation x2 = 1 mod 2p.

Soln: By Chinese remainder theorem, Z∗2p ≡ Z∗2 × Z∗p. Hence, it sufficies to count solutions of the

form (a, b) ∈ Z∗2 × Z∗p such that (a, b)2 = (a2, b2) = (1, 1) (why?). The possible solutions are only

(1, 1) and (1,−1) (why?). Thus here are exactly 2 solutions.

2. 2Let p be an odd prime. Consider the homomorphism f : Z∗p 7→ R defined by f(a) = a
p−1
2

mod p. How many elements are there in ker(f)? (Hint: Let α be a generator of Z∗p. Try evalu-

ating f(α), f(α2), . . .)

Soln: Let g be a generator of Z∗p. Hence, every element in Z∗p must be of the form gi for some positive

integer i, 1 ≤ i ≤ p − 1. f(gi) = 1 if and only if i is even (f(gi) = −1 when i is odd - why?).

Thus, there are
p−1
2

elements in Z∗p whose image under f is 1. Since 1 is the multiplicative identify in

R, and f is a group homomorphism from Z∗p to R∗, ker(f) has
p−1
2

elements.

3. 2Let n be a positive integer. Let 0 6= d ∈ Zn. Consider the ideal I = dZn. How many elements

d′ ∈ Zn satisfy I = d′Zn?

Soln: I consists of all elements of the form dx mod n for various values of x. In other words, I
consists of elements I = {b ∈ Zn : dx = b mod n has a solution}. In other words, I is the
cyclic subgroup of the additive group Zn of n generated by d. Yet another way to look at this is that
I = {b ∈ Zn : there exists integers x, y such that dx + ny = b}. Consequently we see that
I = {b : GCD(n, d)|b} (why?). Thus d′ generates I if and only if GCD(n, d′)=GCD(n, d). But the
order of GCD(n, d) is n

GCD(n,d)
in Zn (why?). Consequently, the question is to find how many elements

of order n
GCD(n,d)

present in the cyclic subgroup generated by GCD(n, d) (why?). We have seen in the

class that this is given by ϕ( n
GCD(n,d)

), where ϕ is the Euler’s tautient function.

4. 2Let p, q be distinct odd primes. For how many values a in {1, 2, . . . , pq− 1}, the system of equations
ax = 1 mod p and ay = −1 mod q have no solution?

Soln: ax = 1 mod p fails to have a solution if and only if a is a multiple of p and ay = −1 mod q
fails to have a solution if and only if a is a multiple of q (why?). Hence, any a which a “non-solution”
in Zpq must be either a multiple of p or q. In other words, non-solutions are precisely those elements in

Zpq\{0} satisfying GCD(a, pq) 6= 1. Hence, there are (pq−1)−ϕ(pq) = (pq−1)−(p−1)(q−1) =
p+ q − 2 non-solutions.

5. 2If n is a Carmichael number. For how many a ∈ Zn, a 6= 0 such that an−1 6= 1 mod n?

Soln: If n is Carmichael, every element in Z∗n will satisfy an−1 = 1 mod n. All the remaining

n− ϕ(n) elements of Zn are not co-prime to n and hence cannot satisfy an−1 = 1 mod n (why?).

6. 2How many elements a ∈ Z∗121 satisfy a11 6= 1 mod 121 and a10 6= 1 mod 121?

Soln: For any odd prime p, Any element in Z∗p2 that satifies ap−1 6= 1 mod p2 and ap 6= 1 mod p2

must have order p(p− 1) and Consequently must be a generator of Z∗p2 . Since Z∗p2 is a cyclic group of

ϕ(p2) elements, it must have ϕ(ϕ(p2)) generators. Here p = 11, hence ϕ(ϕ(121)) = ϕ(110) = 40.

7. 2For what values of d, 0 < d < 121, the equation 3x+ 4y = d have no solution?

Soln: As GCD(3, 4)=1, the equation 3x+ 4y = d has a solution for every integer value of d. Hence,
the answer to the question is zero.



8. 2Consider the system of equations, ax2 + bx = p mod (x− 1) and ax2 + bx = q mod (x + 1).
Solve for a and b in terms of p and q.

Soln: By remainder theorem, the remainder of dividing any polynomial Q(x) by (x−α) is obtained by

evaluating Q(x) at px = α. The two equations given above corresponds to setting Q(x) = ax2+ bx,
with α = 1 and α = −1 respectively. From these, we get a + b = p and a − b = q. Consequently

a = p+1
2

, b = p−q
2

is one possible solution. (Note that other solutions exist. For example, if Q(x) is

one solution, so is Q(x) + S(x)(x2 − 1) for any polynomial S(x)).

9. 2Let b1, b2, . . . , bn and c1, c2, . . . , cn be two distinct basis for a vector space V over a field F . Let B
be the matrix of basis translation satisfying [b1, b2, . . . , bn] = [c1, c2, . . . , cn]B. Show that for any
~x = [x1, x2, . . . , xn] ∈ F n, B~x = 0 only if ~x = 0.

Soln: Suppose B~x = 0, then [c1, c2, . . . , cn]B~x = 0. i.e., [b1, b2, . . . , bn]~x = 0, which is possible if
and only if ~x = 0, as {b1, b2, . . . , bn} is a linearly independent set.

10. 2Let V,W be a vector spaces over a field F . Let b1, b2, . . . , bn be a basis of V . Let T : V 7→ W be a

linear transformation. Suppose T (b1), T (b2), . . . , T (bn) are linearly dependent, is it always the case
that T is not injective? Prove/disprove.

Soln: If T (b1), T (b2), . . . , T (bn) are linearly dependent, then there exists x1, x2, . . . xn ∈ F , not

all zero, such that
∑n

i=1 xiT (bi) = T (
∑n

i=1 xibi) = 0. As b1, b2 . . . , bn are linearly independent,∑n
i=1 xibi 6= 0, and Consequently T cannot be injective.

11. 2Consider the vector space F 4 over the field F = Z2. write down all vectors in two distinct 2 dimensional

subspaces of F 4.

Soln: Any two linearly independent vectors in F 4 will generate a subspace of dimension 2. For instance,
if we take 0110 and 1001, we get the subspace {0000, 0110, 1001, 1111}. If we take 0001 and 1000,
we get the subspace {0000, 0001, 1000, 1001}. There are several other possibilities as well.

12. 2Let b1, b2, . . . , bn be a basis for a vector space V over a field F . Is (b1 − b2), (b2 − b3), . . . ,
(bn−1 − bn), (bn − b1) a basis for V ?

Soln: The sum of the vectors (b1 − b2), (b2 − b3), . . . (bn − b1) is zero, and hence they cannot be
linearly independent.

13. 2Consider the vector space V over R consisting of all polynomials (with real coefficiants) of degree less

than n . Find a basis for this spaces such that the polynomial f(x) = 1 + x+ x2 + · · ·+ xn−1 has
cordinates (1, 0, 0, 0, . . . , 0).

Soln: Any basis b1, b2, . . . bn with b1 = 1 + x+ x2 + · · ·+ xn−1 suffices. For instance, we may set
b2 = 1, b3 = x, b4 = x2, . . . , bn−1 = xn−3, bn = xn−2.

14. 2Let A be a real symmetric postive definite matrix. Show that det(A) 6= 0.

Soln: Given, for any ~x ∈ Rn, ~xTA~x > 0. Hence Ax 6= 0 whenever x 6= 0, consequently A is
non-singular and det(A) 6= 0.

15. 2Let V be an inner-product space over R. Let b1, b2, . . . , bn and c1, c2 . . . , cn be two orthonormal

basis with translation matrix B satisfying [b1, b2, . . . , bn] = [c1, c2, . . . , cn]B. Show that B satisfy

BTB = I .

Soln: Let u, v be arbitrary vectors in V . Let ~x, vecy be cordinates of u, v with respect to [b1, b2 . . . bn].
The cordinates of u, v w.r.t [c1, c2, . . . , cn] will beB~x,B~y. Since both [b1, b2, . . . , bn] and [c1, c2, . . . , cn]
are orthonormal, we have (u, v) = ~xT~y = (B~x)TB~y = ~xTBTB~y. Since u, v were arbitrary, the

equality remains true for all ~x, ~y in Rn, which is possible only if BTB = I .
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16. 2Find the matrix B for an orthonormal basis translation from R2 to R2 (w.r.t. the standard inner
product) satisfying B 6= ±I where I is the 2× 2 identify matrix, such that B has real Eigen values.

Soln:

[
−1 0
0 1

]
,

[
1 0
0 −1

]
are two possibilities. In both cases, [1, 0]T and [0, 1]T are Eigen vectors.

In the first case, the corresponding Eigen values are −1 and 1. In the second case, the Eigen values are
1 and −1. Note that these are “flip” operations around an axis.

17. 2Find the point nearest to the vector [1, 1, 1]T in the plane x+ y + z = 0.

Soln: Since the vector [1, 1, 1]T is perpendicular to the plance x + y + z = 0, its projection to any
vector in the plane is zero. Consequently, the point nearest to the vector in the plane is the origin,
[0, 0, 0]T .

18. 2Let u, v be vectors in a real inner product space V such that (u, v) = 0. Show that ||u + v||2 =
||u||2 + ||v||2.

Soln: ||u+ v||2 = (u+ v, u+ v) = (u, u) + (u, v) + (v, u) + (v, v) = ||u||2 + ||v||2.

19. 2Find a 2× 2 Hermitian matrix A such that [ 1√
2
, 1√

2
]T , [− 1√

2
, 1√

2
]T are Eigen vectors of A with Eigen

values +1 and −1 respectively.

Soln: It is easy to see that the matrix A = 1[ 1√
2
, 1√

2
]T [ 1√

2
, 1√

2
]− 1[− 1√

2
, 1√

2
]T [− 1√

2
, 1√

2
] suffices.

i.e., A =

[
0 1
1 0

]
20. 2Find the cordinates x1, x2, x3 and x4 of the point [1, 2, 3, 4]T with respect to the basis b1 =

1
2
[1, 1, 1, 1]T ,

b2 =
1
2
[1,−1, 1,−1]T , b3 = 1

2
[1, 1,−1,−1]T , b4 = 1

2
[−1, 1, 1,−1]T of R4.

Soln: The given basis is orthonormal. Hence, the cordinates are obtained by projections. Let v =
[1, 2, 3, 4]. We have (v, b1) = 5, (v, b2) = −1, (v, b3) = −2, (v, b4) = 0.
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