CS 6101 MFCS Test-I, Aug. 2017 Solution Key

1. Let $[1,1]$ and $[1,-1]$ be the Eigen vectors of an operator T on \mathbf{R}^{2} with Eigen values +1 and -1 respectively. What is the matrix of T with respect to the standard basis? Show calculation left side.
Soln: Given $T\left(e_{1}+e_{2}\right)=T\left(e_{1}\right)+T\left(e_{2}\right)=e_{1}+e_{2}$ and $T\left(e_{1}-e_{2}\right)=T\left(e_{1}\right)-T\left(e_{2}\right)=e_{2}-e_{1}$. Adding the two equations, we get $2 T\left(e_{1}\right)=2 e_{2}$ or $T\left(e_{1}\right)=e_{2}$. Substituting for $T\left(e_{1}\right)$ in the second equation we get $T\left(e_{2}\right)=e_{1}$. Thus we have:

$$
\left[T\left(e_{1}\right), T\left[e_{2}\right)\right]=\left[e_{1}, e_{2}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and hence the matrix of } T \text { w.r.t the standard basis is }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

2. Suppose a real matrix A has 3 rows and 7 columns. Which among the following is true: 1) The first 4 columns of A cannot be linearly independent. 2) The first 4 columns of A may or may not be linearly independent (depends on the matrix). Give clear justification for your answer.
Soln: The rank of A cannot exceed the row rank, which is at most 3 (why?). Hence, any collection of four or more columns must be linearly dependent (and cannot be linearly independent).
3. Let T be a linear operator \mathbf{R}^{4}, whose Eigen values are $1,2,3$ and 4 with corresponding Eigen vectors [0001], [0011], [0111], [1111]. Find Nullity (T). Justify your answer. (Think!, don’t start..).
Soln: The matrix of the map w.r.t the basis of the given Eigen vectors is
$A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$.
As A is non-singular T is bijective (why?). Consequently, $\operatorname{ker}(T)=\{0\}$ and $\operatorname{Nullity}(T)=0$.
4. In \mathbf{R}^{3}, find the dual basis corresponding to the basis $[0,0,1],[0,1,1],[1,1,1]$. Soln: Let
$b_{1}=[0,0,1]^{T}, b_{2}=[0,1,1]^{T}, b_{3}=[1,1,1]^{T}$. Let $l_{1}\left[l_{11}, l_{12}, l_{13}\right], l_{2}=\left[l_{21}, l_{22}, l_{23}\right], l_{3}=$ $\left[l_{31}, l_{32}, l_{33}\right]$ be the dual basis. We have $l_{i} . b_{j}=1$ if $i=j$ and 0 otherwise. Solving the system of equations (actually this is nothing but a matrix inversion) we get $l_{1}=[0,-1,1], l_{2}=[-1,1,0]$ and $l_{3}=[1,0,0]$
5. Let T be a linear operator on a vector space V of dimension n. Let $b_{1}, b_{2}, \ldots, b_{n}$ be a basis of V. Suppose $T\left(b_{1}\right), T\left(b_{2}\right), \ldots, T\left(b_{n}\right)$ are linearly dependent, can we conclude that T is not injective? (Prove if true; give counter-example otherwise). Answer reverse side.
Soln: Since $T\left(b_{1}\right), T\left(b_{2}\right), \ldots, T\left(b_{n}\right)$ are linearly dependent, there must exist scalars $x_{1}, x_{2}, \ldots, x_{n}$, not all zero, such that $x_{1} T\left(b_{1}\right)+x_{2} T\left(b_{2}\right)+\cdots x_{n} T\left(b_{n}\right)=T\left(x_{1} b_{1}+x_{2} b_{2}+\cdots+x_{n} b_{n}\right)=0$. Since $b_{1}, b_{2}, \ldots, b_{n}$ is a basis, $x_{1} b_{1}+x_{2} b_{2}+\cdots+x_{n} b_{n} \neq 0$ (why?). Consequently, T is not injective.
