CS 6101 MFCS Test-III, Sept. 2017. Name:

1. Let a, b be two two integers. Consider the set S(a, b) of all elements of the form $\alpha a + \beta b$, where α, β are integers. Which of the following is true? Justify your answer. 1) S(a, b) a cyclic group w.r.t addition 2) S(a, b) is not a cyclic group w.r.t addition, but is a group 3) S(a, b) is not a group w.r.t addition.

Soln: S(a, b) is a cyclic group with respect to addition. Let d = GCD(a, b). By definition, every element $x \in S(a, b)$ must be of the form $x = \alpha a + \beta b$. Thus, x must be a multiple of d (why?). Moreover, by Euclid's algorithm, there exists $\alpha_0, \beta_0 \in \mathbb{Z}$ such that $d = \alpha_0 a + \beta_0 b$. Hence $d \in S(a, b)$ and elements of S(a, b) are precisely multiples of d. Thus d must be a generator of S(a, b).

- 2. In \mathbf{Z}_{20}^* , consider the subgroup $H = \{1, 11\}$. Write down all the cosets of this group. Soln: $\mathbf{Z}_{20}^* = \{1, 3, 7, 11, 13, 17, 19\}$. Cosets are $1H = \{1, 11\}, 3H = \{3, 13\}, 7H = \{7, 17\}, 9H = \{9, 19\}$.
- 3. Let (G, ., 1) be any group (not necessarily Abelian) and let H a subgroup of G. Define the following relation in G: For any $a, b \in G$, aRb if $ab^{-1} \in H$. Is R an equivalance relation? (Prove/Provide counter-example).

Soln: R is an equivalance relation. For every $a \in G$, $aa^{-1} = 1 \in H$. Hence aRa. For $a, b \in G$, If aRb, then $ba^{-1} = (ab^{-1})^{-1} \in H$. Hence bRa. Finally, if aRb and bRc for some $a, b, c \in G$, then $ac^{-1} = ab^{-1}bc^{-1} \in H$. Hence aRc.

4. Complete the following version of the Euclid's algorithm that on input positive integers a, b returns a tripple (d, x, y) where d = GCD(a, b) and x, y are integers satisfying xa + yb = d. Derive the computation of the return values of each recursive call.

5. Let G be a cyclic group of order n generated by $a \in G$. Let d divide n. Suppose an element a^t has order $\frac{n}{d}$, show that t is a multiple of d.

Soln: $(a^t)^{\frac{n}{d}} = 1 \Rightarrow a^{\frac{tn}{d}} = 1$. Hence $o(a)|_{\frac{tn}{d}}$ (Lagrange) $\Rightarrow n|_{\frac{tn}{d}} \Rightarrow 1|_{\frac{t}{d}} \Rightarrow \frac{t}{d}$ is an integer.

3

3

3

3