CS 6101 MFCS IV, Sep.'17. Name:

- 1. Let **Q** and **Z** be the set of rational numbers and integers respectively.
 - 1. Is **Z** an ideal in the ring **Q**? Justify your answer. Soln: No (easy!). For instance, $3 \in \mathbf{Z}, \frac{1}{2} \in \mathbf{Q}$, but $3 \times \frac{1}{2} \notin \mathbf{Z}$.
 - 2. Consider the Quotient group (with respect to addition) $\frac{\mathbf{Q}}{\mathbf{Z}}$. Give three distinct elements that belong to the same coset as $\frac{3}{5}$. Soln: (Easy!). For any $n \in \mathbf{Z}$, $\frac{3}{5} + n$ belongs to the same coset as $\frac{3}{5}$.
- 2. For what integer values 1 < d < 24 is it true that \mathbf{Z}_d is a sub-ring of \mathbf{Z}_{24} ? Soln: (Easy!, Conceptual question) For no value of d this can be true. After all, \mathbf{Z}_d is a different ring from \mathbf{Z}_{24} unless d = 24 (the addition is different).
- 3. Specify an ideal I in \mathbb{Z}_{24} with respect which $\frac{\mathbb{Z}_{24}}{I}$ is isomorphic to \mathbb{Z}_{12} . Justify your answer. Soln: (Intermediate) The map $f : \mathbb{Z}_{24} \mapsto \mathbb{Z}_{12}$ defined by $f(x) = x \mod 12$ is an onto homomorphism with kernel $I = \{0, 12\}$ and image \mathbb{Z}_{12} . By homomorphism theorem, $\frac{\mathbb{Z}_{24}}{I}$ is isomorphic to \mathbb{Z}_{12} .
- 4. Let I be an ideal in a ring R. Let $a, b \in R$. Prove that if $x \in a + I$ and $y \in b + I$, $xy \in ab + I$. Soln: (Straight forward) Let $x \in a + I$ and $y \in b + I$. Then, by definition, there exists $i, j \in I$ such that x = a + i and y = b + j. Hence $xy = ab + (aj + bi + ij) \in ab + I$ because $aj + bi + ij \in I$ (why?).
- 5. Let n > 3 be odd positive integer. Suppose $a \notin \mathbb{Z}_n^*$. Is it always true that $a^{n-1} \neq 1 \mod n$? Justify your answer. Soln: (Intermediate) Since $\operatorname{GCD}(a,b) \neq 1$, $\operatorname{GCD}(a^{n-1},n) \neq 1$. If $a^{n-1} \equiv 1 \mod n$, then there must be some integer k so that $a^{n-1} - kn = 1$. But this is not possible as $\operatorname{GCD}(a^{n-1},n) \neq 1$ (why?).
- 6. Suppose p, q are odd primes such that n = pq. Suppose both (p-1) and (q-1) divide n-1, then prove that n is a Carmichael number. Soln: (Non-trivial) Let $a \in \mathbf{Z}_n^*$. By Chinese Reminder Theorem, there exists (unique) $(x, y) \in \mathbf{Z}_p^* \times \mathbf{Z}_q^*$ and $a \equiv x \mod p$ and $a \equiv y \mod q$. By Fermat's theorem $(x, y)^{n-1} = (x^{n-1}, y^{n-1}) = (1, 1)$ in $\mathbf{Z}_p^* \times \mathbf{Z}_q^*$ (why - because p-1 and q-1 are divisors of n-1).
- 7. For what values of $a \in \{1, 2, \dots, 14\}$ does the equation $ax = 10 \mod 15$ have a solution? Soln: (Simple) GCD(a, 15) must divide 10, that is $a \in \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14\}$
- 8. Let *n* be odd composite. Suppose there exists $a \in \mathbb{Z}_n^*$ such that $a^{n-1} \neq 1 \mod n$, then show that at least 50% the elements in \mathbb{Z}_n^* does not satisfy $a^{n-1} \neq 1 \mod n$. Soln: (Straight forward) The set $S = \{a \in \mathbb{Z}_n^* : a^{n-1} = 1 \mod n\}$ is a subgroup of \mathbb{Z}_n^* . Hence, if there exists at least one element in \mathbb{Z}_n^* outside S, then by Lagrange's theorem, S can contain at most half the elements in \mathbb{Z}_n^* .
- 9. Let p, q be odd primes and c, d positive integers such that a) n = pq. b) cd 1 is divisible by (p-1)(q-1), can we conclude that every $a \in \mathbf{Z_n}^*$ is a root of the polynomial $x^{cd} x = 0 \mod n$? Soln: (Non-trivial) Note first that $\phi(n) = (p-1)(q-1)$. Hence $cd \equiv 1 \mod \phi(n)$. Now for any $a \in \mathbf{Z}_n^*$, $a^{cd} \equiv a^{1+k\phi(n)} \equiv a.a^{k\phi(n)} \equiv a \mod n$ by Euler's theorem, or $a^{cd} - a \equiv 0 \mod n$.

3 + 3

3

3

3

3

3

3

3

3