CS 6101 MFCS IV, Sep.'17. Name:

1. Let \mathbf{Q} and \mathbf{Z} be the set of rational numbers and integers respectively.
2. Is \mathbf{Z} an ideal in the ring \mathbf{Q} ? Justify your answer. Soln: No (easy!). For instance, $3 \in \mathbf{Z}, \frac{1}{2} \in \mathbf{Q}$, but $3 \times \frac{1}{2} \notin \mathbf{Z}$.
3. Consider the Quotient group (with respect to addition) $\frac{\mathbf{Q}}{\mathbf{Z}}$. Give three distinct elements that belong to the same coset as $\frac{3}{5}$. Soln: (Easy!). For any $n \in \mathbf{Z}, \frac{3}{5}+n$ belongs to the same coset as $\frac{3}{5}$.
4. For what integer values $1<d<24$ is it true that \mathbf{Z}_{d} is a sub-ring of \mathbf{Z}_{24} ?

Soln: (Easy!, Conceptual question) For no value of d this can be true. After all, \mathbf{Z}_{d} is a different ring from \mathbf{Z}_{24} unless $d=24$ (the addition is different).
3. Specify an ideal I in \mathbf{Z}_{24} with respect which $\frac{\mathbf{Z}_{24}}{I}$ is isomorphic to \mathbf{Z}_{12}. Justify your answer.

Soln: (Intermediate) The map $f: \mathbf{Z}_{24} \mapsto \mathbf{Z}_{12}$ defined by $f(x)=x \bmod 12$ is an onto homomorphism with kernel $I=\{0,12\}$ and image \mathbf{Z}_{12}. By homomorphism theorem, $\frac{\mathbf{Z}_{24}}{I}$ is isomorphic to \mathbf{Z}_{12}.
4. Let I be an ideal in a ring R. Let $a, b \in R$. Prove that if $x \in a+I$ and $y \in b+I, x y \in a b+I$. Soln: (Straight forward) Let $x \in a+I$ and $y \in b+I$. Then, by definition, there exists $i, j \in I$ such that $x=a+i$ and $y=b+j$. Hence $x y=a b+(a j+b i+i j) \in a b+I$ because $a j+b i+i j \in I$ (why?).
5. Let $n>3$ be odd positive integer. Suppose $a \notin \mathbf{Z}_{n}^{*}$. Is it always true that $a^{n-1} \neq 1 \bmod n$? Justify your answer.
Soln: (Intermediate) Since $\operatorname{GCD}(a, b) \neq 1, \operatorname{GCD}\left(a^{n-1}, n\right) \neq 1$. If $a^{n-1} \equiv 1 \bmod n$, then there must be some integer k so that $a^{n-1}-k n=1$. But this is not possible as $\operatorname{GCD}\left(a^{n-1}, n\right) \neq 1$ (why?).
6. Suppose p, q are odd primes such that $n=p q$. Suppose both $(p-1)$ and $(q-1)$ divide $n-1$, then prove that n is a Carmichael number.
Soln: (Non-trivial) Let $a \in \mathbf{Z}_{n}^{*}$. By Chinese Reminder Theorem, there exists (unique) $(x, y) \in$ $\mathbf{Z}_{p}^{*} \times \mathbf{Z}_{q}^{*}$ and $a \equiv x \bmod p$ and $a \equiv y \bmod q$. By Fermat's theorem $(x, y)^{n-1}=\left(x^{n-1}, y^{n-1}\right)=$ $(1,1)$ in $\mathbf{Z}_{p}^{*} \times \mathbf{Z}_{q}^{*}$ (why - because $p-1$ and $q-1$ are divisors of $n-1$).
7. For what values of $a \in\{1,2, \cdots 14\}$ does the equation $a x=10 \bmod 15$ have a solution?

Soln: (Simple) $\operatorname{GCD}(a, 15)$ must divide 10 , that is $a \in\{1,2,4,5,7,8,10,11,13,14\}$
8. Let n be odd composite. Suppose there exists $a \in \mathbf{Z}_{n}^{*}$ such that $a^{n-1} \neq 1 \bmod n$, then show that at least 50% the elements in \mathbf{Z}_{n}^{*} does not satisfy $a^{n-1} \neq 1 \bmod n$.
Soln: (Straight forward) The set $S=\left\{a \in \mathbf{Z}_{n}^{*}: a^{n-1}=1 \bmod n\right\}$ is a subgroup of \mathbf{Z}_{n}^{*}. Hence, if there exists at least one element in \mathbf{Z}_{n}^{*} outside S, then by Lagrange's theorem, S can contain at most half the elements in \mathbf{Z}_{n}^{*}.
9. Let p, q be odd primes and c, d positive integers such that a) $n=p q$. b) $c d-1$ is divisible by $(p-1)(q-1)$, can we conclude that every $a \in \mathbf{Z}_{\mathbf{n}}{ }^{*}$ is a root of the polynomial $x^{c d}-x=0 \bmod n$? Soln: (Non-trivial) Note first that $\phi(n)=(p-1)(q-1)$. Hence $c d \equiv 1 \bmod \phi(n)$. Now for any $a \in \mathbf{Z}_{n}^{*}, a^{c d} \equiv a^{1+k \phi(n)} \equiv a . a^{k \phi(n)} \equiv a \bmod n$ by Euler's theorem, or $a^{c d}-a \equiv 0 \bmod n$.

