CS 6101 MFCS - Test V, Sep.'17. Name:

1. (3 points) Let p, q be odd primes. Let i, j be elements in $\mathbf{Z}_{p q}$ and such that $(i \bmod p)=1,(i \bmod q)=$ $0,(j \bmod p)=0,(j \bmod q)=1$. Find an expression in terms of i, j, p and q for all distinct solutions (upto congruence $\bmod p q$) for the equation $x^{2}=1 \bmod p q$.
Soln: Assuming $p \neq q$, the possible solutions are those for which $x= \pm 1 \bmod p$ and $x= \pm 1 \bmod q$. It is not hard to see that $x= \pm i \pm j$ satisfies these conditions. (Chinese remainder Theorem shows that $i=q\left(q^{-1} \bmod p\right)$ and $\left.j=p\left(p^{-1} \bmod q\right)\right)$. if x is a solution, so is $x+p q$. Hence, the general solution is $\pm i \pm j+t p q$ for all integer t.
if $p=q$, then $\mathbf{Z}_{p^{2}}^{*}$ is a cyclic group. Any solution to $x^{2}=1 \bmod p^{2}$ must have order 2 or 1 (why?). There is $\phi(2)=1$ element of order 2 (why?) and there are two solutions in total to $x^{2}-1=0$. (Full marks will be given if you solve the case $p \neq q$.)
2. (3 points) Let $I \neq\{0\}$ be an ideal in \mathbf{Z}. Let r be the least positive integer in I. Show that every element in I is an integer multiple of r.
Soln: Suppose $i \in I$. Let $i=x r+y$ where $x=i \operatorname{div} r$ and $y=i \bmod r$. We have therefore, $y<r$. But by the absoption property of ideal, $x r \in I$ and hence $i-x r=y \in I$ (why?). This contradicts the assumption that r is the least positive integer in I.
3. (3 points) Let M_{n} be the set of all $n \times n$ non-singular real matrices. Let f be the map from M_{n} to \mathbf{R} defined by $f(A)=\operatorname{det}(A)$. Is f a ring homomorphism? if so find the kernel and image of f.
Soln: f is not a ring homomorphism because $f(A+B)=\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)=f(A)+f(B)$ in general. In fact, the set of non-singular real matrices do not even form a ring. (if A is non-singular, $A-A$ is singular etc.). However, the set of non-singular matrices form a (non-commutative) group with respect to multiplication and f is a group homomorphism onto non-zero real numbers (with multiplication).
4. (3 points) Let p, q be odd primes. What is the maximum order of an element in $Z_{p q}^{*}$?

Soln: By Chinese remainder Theorem, $Z_{p q}^{*} \cong \mathbf{Z}_{p}^{*} \times \mathbf{Z}_{q}^{*}$. Since both \mathbf{Z}_{p}^{*} and \mathbf{Z}_{q}^{*} are cyclic with order $p-1$ and $q-1$, Let g_{1} and g_{2} be generators of \mathbf{Z}_{p}^{*} and \mathbf{Z}_{q}^{*} respectively. Every element in $\mathbf{Z}_{p}^{*} \times \mathbf{Z}_{q}^{*}$ is of the form $\left(g_{1}^{i}, g_{2}^{j}\right)$ for some integers i, j. Let $t=\operatorname{LCM}(p-1, q-1)$, then $\left(g_{1}^{t}, g_{2}^{t}\right)=(1,1)$ in $\mathbf{Z}_{p}^{*} \times \mathbf{Z}_{q}^{*}$, it follows that any element of form $\left(g_{1}^{i}, g_{2}^{j}\right)$ will have order at most t (why?).
If $p=q, \mathbf{Z}_{p^{2}}^{*}$ is cyclic of order $p(p-1)$. Hence, generators of $\mathbf{Z}_{p^{2}}^{*}$ have order $p(p-1)$, which is the maximum possible (why?).
5. (3 points) Let p be an odd prime. Let g be a generator of \mathbf{Z}_{p}^{*}. Suppose g is not a generator of $Z_{p^{2}}^{*}$, what is the order of g. Give clear proof for your answer.
Soln: $Z_{p^{2}}^{*}$ has order $p(p-1)$ and is cyclic. If $o(g)$ in this group is t, then $g^{t}=1 \bmod p^{2}$ and $g^{t}=1$ $\bmod p$ (why?). This implies that $p-1|t| p(p-1)$. The only possible value for t is $p-1$.

