CS 6101 MFCS - Test V, Sep.'17. Name:

Unless stated otherwise, assume V to be a complex inner product space with inner product ()$, \operatorname{dim}(V)=n$.

1. (3 points) Let A be the matrix of the inner product w.r.t basis $\left[b_{1}, b_{2}, \ldots b_{n}\right]$. Let $\left[c_{1}, c_{2}, \ldots c_{n}\right]$ be another basis such that $\left[b_{1}, b_{2}, \ldots b_{n}\right]=\left[c_{1}, c_{2}, \ldots c_{n}\right] B$. What will be the matrix of the inner product with respect to basis $\left[c_{1}, c_{2}, \ldots c_{n}\right]$? (Answer in terms of A and B.)
Soln: Let A^{\prime} is the matrix of the inner product with respect to $\left[c_{1}, c_{2}, \ldots c_{n}\right]$. If \vec{x}, \vec{y} be coordinate vectors of $u, v \in V$ wrt $\left[b_{1}, b_{2}, \ldots b_{n}\right]$, then $B \vec{x}, B \vec{y}$ will be their coordinates wrt $\left[c_{1}, c_{2}, \ldots c_{n}\right]$. Hence, the inner product $(u, v)=(B \vec{x})^{T} A^{\prime} \overline{B \vec{y}}=\vec{x}^{T} A \overline{\vec{y}}$. Since \vec{x}, \vec{y} were chosen arbitrary, we have $A=B^{T} A^{\prime} \bar{B}$ or $A^{\prime}=\left(B^{T}\right)^{-1} A(\bar{B})^{-1}$.
2. (3 points) Consider the basis $\left[\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right]^{T},\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{T}$ of \mathbf{R}^{2}. What is the matrix of the standard inner product w.r.t this basis? Justify your answer.
Soln: Since $\left[\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right]^{T},\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{T}$ is an orthonormal basis for \mathbf{R}^{2} wrt the standard basis, the matrix will be the 2×2 identity matrix.
3. (3 points) What are the coordinates of the the vector $[1,1,1,2]^{T}$ w.r.t the basis $b_{1}=\frac{1}{2}[1,1,1,1]^{T}, b_{2}=$ $\frac{1}{2}[1,-1,1,-1]^{T}, b_{3}=\frac{1}{2}[1, j,-1,-j]^{T}, b_{4}=\frac{1}{2}[1,-j,-1, j]^{T}$ of \mathbf{C}^{4} ? (Think!, Don't start calculation).
Soln: Let $v=[1,1,1,2]^{T}$. It is easy to see that $\left[b_{1}, b_{2}, b_{3}, b_{4}\right]$ is an orthonormal basis for \mathbf{C}^{4}. with respect to the standard inner product. Hence, $v=\left(v, b_{1}\right) b_{1}+\left(v, b_{2}\right) b_{2}+\left(v, b_{3}\right) b_{3}+\left(v, b_{4}\right) b_{4}$. The coordinates are $[1,1,1,2] \frac{1}{2} \overline{[1,1,1,1]^{T}}=\frac{5}{2},[1,1,1,2] \frac{1}{2} \overline{[1,-1,1,-1]^{T}}=-\frac{1}{2},[1,1,1,2] \frac{1}{2} \overline{[1, j,-1,-j]^{T}}=\frac{j}{2}$, $[1,1,1,2] \frac{1}{2} \overline{[1,-j,-1, j]^{T}}=-\frac{j}{2}$.
4. (3 points) Find the point on the line $x+y=0$ that is closest to the point $(1,0)$ in \mathbf{R}^{2} (with respect to Euclidean distance).
Soln: $u=\left[\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{T}$ is a unit vector along the line $x+y=0$. Hence Projection of $[1,0]^{T}$ on the direction defined by u gives the vector nearest to $[1,0]^{T}$ along $x+y=0$ with respect to the Euclidean distance. The projection is $\left(\left([1,0]\left[\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{T}\right) u=\left[\frac{1}{2},-\frac{1}{2}\right]^{T}\right.$
5. (3+3 points) Let $H: V \mapsto V$ be a linear map satisfying for all $u, v \in V,(u, H v)=(H u, v)$. Let λ be an Eigen value of H.
6. Show that λ is a real number

Soln: Let x be an Eigen vector corresponding to Eigen value λ. Then $\lambda\|x\|^{2}=(\lambda x, x)=(H x, x)=$ $(x, H x)=(x, \lambda x)=\bar{\lambda}\|x\|^{2}$. As $x \neq 0$, We have $\|x\| \neq 0$ and hence $\bar{\lambda}=\lambda$, which implies that λ is real.
2. Let $E_{\lambda}=\{v \in V: H v=\lambda v\}$, the Eigen space associated with the Eigen value λ. Let $u \in E_{\lambda}^{\perp}$. Show that $H u \in E_{\lambda}^{\perp} .\left(E_{\lambda}^{\perp}\right.$ is the orthogonal compliment space of E_{λ}.)
Soln: Let $v \in E_{\lambda}$ and $w \in E_{\lambda}^{\perp}$ be chosen arbitrarily. The choice of v, w ensures that $(v, w)=0$. It is enough to prove that $(v, H w)=0$ (why?). But $(v, H w)=(H v, w)=(\lambda v, w)=(\lambda v, w)=$ $\lambda(v, w)=0$.

