CS 6101 MFCS - Test V, Sep.'17. Name:

Unless stated otherwise, assume V to be a complex inner product space with inner product (), dim(V) = n.

1. (3 points) Let A be the matrix of the inner product w.r.t basis $[b_1, b_2, \ldots b_n]$. Let $[c_1, c_2, \ldots c_n]$ be another basis such that $[b_1, b_2, \ldots b_n] = [c_1, c_2, \ldots c_n]B$. What will be the matrix of the inner product with respect to basis $[c_1, c_2, \ldots c_n]$? (Answer in terms of A and B.)

Soln: Let A' is the matrix of the inner product with respect to $[c_1, c_2, \ldots c_n]$. If \vec{x}, \vec{y} be coordinate vectors of $u, v \in V$ wrt $[b_1, b_2, \ldots b_n]$, then $B\vec{x}, B\vec{y}$ will be their coordinates wrt $[c_1, c_2, \ldots c_n]$. Hence, the inner product $(u, v) = (B\vec{x})^T A' B\vec{y} = \vec{x}^T A \vec{y}$. Since \vec{x}, \vec{y} were chosen arbitrary, we have $A = B^T A' B$ or $A' = (B^T)^{-1} A(B)^{-1}$.

2. (3 points) Consider the basis $[\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}]^T, [\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]^T$ of \mathbf{R}^2 . What is the matrix of the standard inner product w.r.t this basis? Justify your answer.

Soln: Since $[\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}]^T, [\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]^T$ is an orthonormal basis for \mathbf{R}^2 wrt the standard basis, the matrix will be the 2×2 identity matrix.

- 3. (3 points) What are the coordinates of the the vector $[1, 1, 1, 2]^T$ w.r.t the basis $b_1 = \frac{1}{2}[1, 1, 1, 1]^T$, $b_2 = \frac{1}{2}[1, -1, 1, -1]^T$, $b_3 = \frac{1}{2}[1, j, -1, -j]^T$, $b_4 = \frac{1}{2}[1, -j, -1, j]^T$ of \mathbf{C}^4 ? (Think!, Don't start calculation). Soln: Let $v = [1, 1, 1, 2]^T$. It is easy to see that $[b_1, b_2, b_3, b_4]$ is an orthonormal basis for \mathbf{C}^4 . with respect to the standard inner product. Hence, $v = (v, b_1)b_1 + (v, b_2)b_2 + (v, b_3)b_3 + (v, b_4)b_4$. The coordinates are $[1, 1, 1, 2]\frac{1}{2}\overline{[1, -1, 1, 1]^T} = \frac{5}{2}$, $[1, 1, 1, 2]\frac{1}{2}\overline{[1, -1, 1, -1]^T} = -\frac{1}{2}$, $[1, 1, 1, 2]\frac{1}{2}\overline{[1, j, -1, -j]^T} = \frac{j}{2}$, $[1, 1, 1, 2]\frac{1}{2}\overline{[1, -j, -1, j]^T} = -\frac{j}{2}$.
- 4. (3 points) Find the point on the line x + y = 0 that is closest to the point (1,0) in \mathbb{R}^2 (with respect to Euclidean distance).

Soln: $u = \begin{bmatrix} \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \end{bmatrix}^T$ is a unit vector along the line x + y = 0. Hence Projection of $[1, 0]^T$ on the direction defined by u gives the vector nearest to $[1, 0]^T$ along x + y = 0 with respect to the Euclidean distance. The projection is $(([1, 0][\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]^T)u = [\frac{1}{2}, -\frac{1}{2}]^T$

- 5. (3+3 points) Let $H: V \mapsto V$ be a linear map satisfying for all $u, v \in V$, (u, Hv) = (Hu, v). Let λ be an Eigen value of H.
 - 1. Show that λ is a real number

 $\lambda(v, w) = 0.$

Soln: Let x be an Eigen vector corresponding to Eigen value λ . Then $\lambda ||x||^2 = (\lambda x, x) = (Hx, x) = (x, Hx) = (x, \lambda x) = \overline{\lambda} ||x||^2$. As $x \neq 0$, We have $||x|| \neq 0$ and hence $\overline{\lambda} = \lambda$, which implies that λ is real.

2. Let $E_{\lambda} = \{v \in V : Hv = \lambda v\}$, the Eigen space associated with the Eigen value λ . Let $u \in E_{\lambda}^{\perp}$. Show that $Hu \in E_{\lambda}^{\perp}$. (E_{λ}^{\perp}) is the orthogonal compliment space of E_{λ} .) Soln: Let $v \in E_{\lambda}$ and $w \in E_{\lambda}^{\perp}$ be chosen arbitrarily. The choice of v, w ensures that (v, w) = 0. It is enough to prove that (v, Hw) = 0 (why?). But $(v, Hw) = (Hv, w) = (\lambda v, w) = (\lambda v, w) =$