Inner Product Spaces Linear Algebra Notes

Satya Mandal

November 21, 2005

1 Introduction

In this chapter we study the additional structures that a vector space over field of reals or complex vector spaces have. So, in this chapter, \mathbb{R} will denote the field of reals, \mathbb{C} will denote the field of complex numbers, and \mathbb{F} will deonte one of them.

In my view, this is where algebra drifts out to analysis.
1.1 (Definition) Let \mathbb{F} be the field reals or complex numbers and V be a vector space over \mathbb{F}. An inner product on V is a function

$$
(*, *): V \times V \longrightarrow \mathbb{F}
$$

such that

1. $(a x+b y, z)=a(x, z)+b(y, z)$, for $a, b \in \mathbb{F}$ and $x, y, z \in V$.
2. $(x, y)=\overline{(y, x)}$ for $x, y \in V$.
3. $(x, x)>0$ for all non-zero $x \in V$
4. Also define $\|x\|=\sqrt{(x, x)}$. This is called norm of x.

Comments: Real Case: Assume $\mathbb{F}=\mathbb{R}$. Then

1. Item (2) means $(x, y)=(y, x)$.
2. Also (1 and 2) means that the inner product is bilinear.

Comments: Complex Case: Assume $\mathbb{F}=\mathbb{C}$. Then

1. Items (1 and 2) means that the $(x, c y+d z)=\bar{c}(x, y)+\bar{c}(x, z)$.
1.2 (Example) On \mathbb{R}^{n} we have the standard inner product defined by $(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$, where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$
1.3 (Example) On \mathbb{C}^{n} we have the standard inner product defined by $(x, y)=\sum_{i=1}^{n} x_{i} \overline{y_{i}}$, where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$
1.4 (Example) Let $\mathbb{F}=\mathbb{R} \quad O R \quad \mathbb{C}$ and $V=\mathbb{M}_{n}(\mathbb{F})$. For $A=\left(a_{i j}\right), B=$ $\left(b_{i j}\right) \in V$ define inner product

$$
(A, B)=\sum_{i, j} a_{i j} \overline{b_{i j}} .
$$

Define conjugate transpose $B^{*}=(\bar{B})^{t}$. Then

$$
(A, B)=\operatorname{trace}\left(B^{*} A\right)
$$

1.5 (Example: Integration) Let $\mathbb{F}=\mathbb{R} \quad O R \quad \mathbb{C}$ and V be the vector space of all \mathbb{F}-valued continuous functions on $[0,1]$. For $f, g \in V$ define

$$
(f, g)=\int_{0}^{1} f \bar{g} d t
$$

This is an inner product on V. In some distant future this will be called L^{2} inner product space. This can be done in any "space" where you have an idea of integration and it will come under Measure Theory.
1.6 (Matrix of Inner Product) Let $\mathbb{F}=\mathbb{R} \quad O R \quad \mathbb{C}$. Suppose V is a vector space over \mathbb{F} with an inner product. Let e_{1}, \ldots, e_{n} be a basis of V. Let $p_{i, j}=\left(e_{i}, e_{j}\right)$ and $P=\left(p_{i j}\right) \in \mathbb{M}_{n}(\mathbb{F})$. Then for $v=x_{1} e_{1}+\cdots+x_{n} e_{n} \in V$ and $W=y_{1} e_{1}+\cdots+y_{n} e_{n} \in V$ we have

$$
(v, w)=\sum x_{i} \overline{y_{j}} p_{i j}=\left(x_{1}, \ldots, x_{n}\right) P\left(\begin{array}{c}
\overline{y_{1}} \\
\overline{y_{2}} \\
\cdots \\
\overline{y_{n}}
\end{array}\right)
$$

1. This matrix P is called the matrix of the inner product with respect to the basis e_{1}, \ldots, e_{n}.
2. (Definition.) A matrix B is called hermitian if $B=B^{*}$.
3. So, matrix P in (1) is a hermitian matrix.
4. Since $(v, v)>0$, for all non-zero $v \in V$, we have

$$
X P \bar{X}^{t}>0 \quad \text { for all non-zero } \quad X \in \mathbb{F}^{n}
$$

5. It also follows that P is non-singular. (Otherwise $X P=0$ for some non-zero X.)
6. Conversely, if P is a $n \times n$ hermitian matrix satisfying such that $X P \bar{X}^{t}>0$ for all $X \in \mathbb{F}^{n}$ then

$$
(X, Y)=X P \bar{Y}^{t} \quad \text { for } \quad X \in \mathbb{F}^{n}
$$

defines an inner product on \mathbb{F}^{n}.

2 Inner Product Spaces

We will do calculus of inner produce.
2.1 (Definition) Let $\mathbb{F}=\mathbb{R} \quad O R \quad \mathbb{C}$. A vector space V over \mathbb{F} with an inner product $(*, *)$ is said to an inner product space.

1. An inner product space V over \mathbb{R} is also called a Euclidean space.
2. An inner product space V over \mathbb{C} is also called a unitary space.
2.2 (Basic Facts) Let $\mathbb{F}=\mathbb{R} \quad O R \quad \mathbb{C}$ and V be an inner product over \mathbb{F}. For $v, w \in V$ and $c \in \mathbb{F}$ we have
3. $\|c v\|=|c|\|v\|$,
4. $\|v\|>0 \quad$ if $\quad v \neq 0$,
5. $|(v, w)| \leq\|v\|\|w\|$, Equility holds if and only if $w=\frac{(w, v)}{\|v\|^{2}} v$. (It is called the Cauchy-Swartz inequality.)
6. $\|v+w\| \leq\|v\|+\|w\|$. (It is called the triangular inequality.)

Proof. Part 1 and 2 is obvious from the definition. To prove the Part (3), we can assume that $v \neq 0$. Write

$$
z=w-\frac{(w, v)}{\|v\|^{2}} v
$$

Then $(z, v)=0$ and
$0 \leq\|z\|^{2}=\left(z, w-\frac{(w, v)}{\|v\|^{2}} v\right)=(z, w)=\left(w-\frac{(w, v)}{\|v\|^{2}} v, w\right)=\|w\|^{2}-\frac{(w, v)(v, w)}{\|v\|^{2}}$.
This establishes (3). We will use Part 3 to prove Part 4, as follows:

$$
\begin{aligned}
& \|v+w\|^{2}=\|v\|^{2}+(v, w)+(w, v)+\|w\|^{2}=\|v\|^{2}+2 \operatorname{Re}[(v, w)]+\|w\|^{2} \leq \\
& \|v\|^{2}+2|(v, w)|+\|w\|^{2} \leq\|v\|^{2}+2\|v\|\|w\|+\|w\|^{2}=(\|v\|+\|w\|)^{2} .
\end{aligned}
$$

This establishes Part 4.
2.3 (Application of Cauchy-Schwartz inequality) Application of (3) of Facts 2.2 gives the following:

1. Example 1.2 gives

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}
$$

for $x, y_{i} \in \mathbb{R}$.
2. Example 1.3, gives

$$
\left|\sum_{i=1}^{n} x_{i} \overline{y_{i}}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{1 / 2}
$$

for $x, y_{i} \in \mathbb{C}$.
3. Example 1.4, gives

$$
\left|\operatorname{trace}\left(A B^{*}\right)\right| \leq \operatorname{trace}\left(A A^{*}\right)^{1 / 2} \operatorname{trace}\left(B B^{*}\right)^{1 / 2}
$$

for $A, B \in \mathbb{M}_{n}(\mathbb{C})$.
4. Example 1.5, gives

$$
\left|\int_{0}^{1} f(t) \overline{g(t)} d t\right| \leq\left(\int_{0}^{1}|f(t)|^{2} d t\right)^{1 / 2}\left(\int_{0}^{1}|g(t)|^{2} d t\right)^{1 / 2}
$$

for any two continuous \mathbb{C}-valued functions f, g on $[0,1]$.

2.1 Orthogonality

2.4 (Definition) Let \mathbb{F} be \mathbb{R} or \mathbb{C}. Let V be an inner product space over \mathbb{F}.

1. Supppose $v, w \in V$. We say that v and w are mutually orthogonal if the inner product $(v, w)=0$ (OR equivalently if $(w, v)=0$. We use variations of the expression "mutually orthogonal" and sometime we do not mention the word "mutually".)
2. For $v, w \in V$ we write $v \perp w$ to mean v and w are mutually orthogonal.
3. A subset $S \subseteq V$ is said to be an orthogonal set if

$$
v \perp w \quad \text { for } \quad \text { all } \quad v, w \in S, \quad v \neq w .
$$

4. An othrhogonal set S is said to be an orthnormal set if

$$
\|v\|=1 \quad \text { for } \quad \text { all } \quad v \in S
$$

5. (Comment) Note the zero vector is otrhogonal to all elements of V.
6. (Comment) Geometrically, $v \perp w$ means v is perpendicular to w.
7. (Example) Let $V=\mathbb{R}^{n}$ or $V=\mathbb{C}^{n}$. Then the standard basis $E=$ $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal set.
8. (Example) In \mathbb{R}^{2} or \mathbb{C}^{2}, we have the ordered pairs $v=(x, y)$ and $w=(y,-x)$ are oththogonal. (Caution: Notation (x, y) here.)
2.5 (Example) Cosider the example 1.5 over \mathbb{R}. Here V is the inner product space of all real valued continuous functions on $[0,1]$. Let

$$
f_{n}(t)=\sqrt{2} \cos (2 \pi n t) \quad g_{n}(t)=\sqrt{2} \sin (2 \pi n t)
$$

Then

$$
\left\{1, f_{1}, g_{1}, f_{2}, g_{2}, \ldots\right\}
$$

is an orthonormal set.

Now consider the inner product space W in the same example 1.5 over C. Let

$$
h_{n}=\frac{f_{n}+i g_{n}}{\sqrt{2}}=\exp (2 \pi i n t)
$$

Then

$$
\left\{h_{n}: n=0,1,-1,2,-2, \ldots,, \ldots\right\}
$$

is an orthonormal set
2.6 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}. Let S be an orthogonal set of non-zero vectors. Then S is linearly independent. (Therefore, cardinality $(S) \leq \operatorname{dim} V$.)

Proof. Let $v_{1}, v_{2}, \ldots, v_{n} \in S$ and

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=0
$$

where $c_{i} \in \mathbb{F}$. We will prove $c_{i}=0$. For example, apply inner product $\left(*, v_{1}\right)$ to the above equation. We get:

$$
c_{1}\left(v_{1}, v_{1}\right)+c_{2}\left(v_{2}, v_{1}\right)+\cdots+c_{n}\left(v_{n}, v_{1}\right)=\left(0, v_{1}\right)=0
$$

Since $\left(v_{1}, v_{1}\right) \neq 0$ and $\left(v_{2}, v_{1}\right)=\left(v_{3}, v_{1}\right)=\cdots=\left(v_{n}, v_{1}\right)=0$, we get $c_{1}=0$. Similarly, $c_{i}=0$ for all $i=1, \ldots, n$.
2.7 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}. Assume $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ is a set of non-zero orthogonal vectors. Let $v \in V$ and

$$
v=c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{r} e_{r}
$$

where $c_{i} \in \mathbb{F}$. Then

$$
c_{i}=\frac{\left(v, e_{i}\right)}{\left\|e_{i}\right\|^{2}}
$$

for $i=1, \ldots, r$.
Proof. For example, apply inner product $\left(*, e_{1}\right)$ to the above and get

$$
\left(v, e_{1}\right)=c_{1}\left(e_{1}, e_{1}\right)=c_{1}\left\|e_{1}\right\|^{2}
$$

So, c_{1} is as asserted and, similarly, so is c_{i} for all i.
2.8 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}. Let $v_{1}, v_{2}, \ldots, v_{r}$ be a set of linearly independent set. Then we can construct elements $e_{1}, e_{2}, \ldots, e_{r} \in V$ such that

1. $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ is an orthonormal set,
2. $e_{k} \in \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$

Proof. The proof is known as Gram-Schmidt orthogonalization process. Note $v_{1} \neq 0$. First, let

$$
e_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}
$$

Then $\left\|e_{1}\right\|=1$. Now lat

$$
e_{2}=\frac{v_{2}-\left(v_{2}, e_{1}\right) e_{1}}{\left\|v_{2}-\left(v_{2}, e_{1}\right) e_{1}\right\|}
$$

Note that the denominator is non-zero, $e_{1} \perp e_{2}$ and $\left\|e_{2}\right\|=1$. Now we use the induction. Suppose we already constructed e_{1}, \ldots, e_{k-1} that satisfies (1) and (2) and $k \leq r$. Let

$$
e_{k}=\frac{v_{k}-\sum_{i=1}^{k-1}\left(v_{k}, e_{i}\right) e_{i}}{\left\|v_{k}-\sum_{i=1}^{k-1}\left(v_{k}, e_{i}\right) e_{i}\right\|} .
$$

Note that the denominator is non-zero, $\left\|e_{k}\right\|=1$. and $e_{k} \perp e_{i}$ for $i=$ $1, \ldots, k-1$. From construction, we also have

$$
\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)=\operatorname{Span}\left(\left\{e_{1}, \ldots, e_{k}\right\}\right)
$$

So, the proof is complete.
2.9 (Corollary) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Then V has an orthonormal basis.

Proof. The proof is immediate from the above theorem 2.8.
Examples. Read examples 12 and 13, page 282, for some numerical computations.
2.10 (Definition) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a inner product space over \mathbb{F}. Let W be a subspace of V and $v \in V$. An element $w_{0} \in W$ is said to be a best approximation to v or nearest to v in W, if

$$
\left\|v-w_{0}\right\| \leq\|v-w\| \quad \text { for } \quad \text { all } \quad w \in W
$$

(Try to think what it means in \mathbb{R}^{2} or \mathbb{C}^{n} when W is line or a plane through the origin.)

Remark. I like the expression "nearest" and the textbook uses "best approximation". I will try to be consistent to the textbook.
2.11 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a inner product space over \mathbb{F}. Let W be a subspace of V and $v \in V$. Then

1. An element $w_{0} \in W$ is best approximation to v if and only if $\left(v-w_{0}\right) \perp$ w for all $w \in W$.
2. A best approximation $w_{0} \in W$ to v, if exists, is unique.
3. Suppose W is finite dimensional and $e_{1}, e_{2}, \ldots, e_{n}$ is an orthonormal basis of W. Then

$$
w_{0}=\sum_{k=1}^{n}\left(v, e_{k}\right) e_{k}
$$

is the best approximation to v in W. (The textbook mixes up orthogonal and orthonormal and have a condition the looks complex. We assume orthonormal and so $\left\|e_{i}\right\|=1$)

Proof. To prove (1) let $w_{0} \in W$ be such that $\left(v-w_{0}\right) \perp w$ for all $w \in W$. Then, since $w-w_{0} \in W$, we have
$\|v-w\|^{2}=\left\|\left(v-w_{0}\right)+\left(w_{0}-w\right)\right\|^{2}=\left\|\left(v-w_{0}\right)\right\|^{2}+\left\|\left(w_{0}-w\right)\right\|^{2} \geq\left\|\left(v-w_{0}\right)\right\|^{2}$.
Therefore, w_{0} is nearest to v. Conversely, assume that $w_{0} \in W$ is nearest to v. We will prove that the inner product $\left(v-w_{0}, w\right)=0$ for all $w \in W$. For convenience, we write $v_{0}=v-w_{0}$. So, we have

$$
\left\|v_{0}\right\|^{2} \leq\|v-w\|^{2} \quad E q n-I
$$

for all $w \in W$. Write $v-w=v-w_{0}+\left(w_{0}-w\right)=v_{0}+\left(w_{0}-w\right)$. Since any element in w van be written as $w_{0}-w$ for some $w \in W$, Eqn-I can be rewritten as

$$
\left\|v_{0}\right\|^{2} \leq\left\|v_{0}+w\right\|^{2}
$$

for all $w \in W$. So, we have

$$
\left\|v_{0}\right\|^{2} \leq\left\|v_{0}+w\right\|^{2}=\left\|v_{0}\right\|^{2}+2 \operatorname{Re}\left[\left(v_{0}, w\right)\right]+\|w\|^{2}
$$

and hence

$$
0 \leq 2 \operatorname{Re}\left[\left(v_{0}, w\right)\right]+\|w\|^{2} \quad E q n-I I
$$

for all $w \in W$.
Fix $w \in W$ with $w \neq w_{0}$ and write

$$
\tau=-\frac{\left(v_{0}, w_{0}-w\right)}{\left\|w_{0}-w\right\|^{2}}\left(w_{0}-w\right)
$$

Since, $\tau \in W$, we can substitute τ for w in Eqn-II and get

$$
0 \leq-\frac{\left|\left(v_{0}, w_{0}-w\right)\right|^{2}}{\left\|w_{0}-w\right\|^{2}}
$$

Therefore $\left(v_{0}, w_{0}-w\right)=0$ for all $w \in W$ with $w_{0}-w \neq 0$. Again, since any non-zero element in W can be written as $w_{0}-w$, it follows that $\left(v_{0}, w\right)=0$ for all $w \in W$. So the proof of (1) is complete.

To prove Part 2, let w_{0}, w_{1} be nearest to v. Then, by orthogonality (1), we have

$$
\left\|w_{0}-w_{1}\right\|^{2}=\left(w_{0}-w_{1}, w_{0}-w_{1}\right)=\left(w_{0}-w_{1},\left[w_{0}-v\right]+\left[v-w_{1}\right]\right)=0
$$

So, Part 2 is established.
Let w_{0} be given as in Part 3. Now, to prove Part 3, we will prove $\left(w_{0}-v\right) \perp$ e_{i} for $i=1, \ldots, n$. So, for example,

$$
\left(w_{0}-v, e_{1}\right)=\left(w_{0}, e_{1}\right)-\left(v, e_{1}\right)=\left(v, e_{1}\right)\left(e_{1}, e_{1}\right)-\left(v, e_{1}\right)=0 .
$$

So, Part 3 is established.
2.12 (Definition) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}. Let S be a subset of V. The otrhogonal complement S^{\perp} of S is the set of all elements in V that are orthogonal to each element of S. So,

$$
S^{\perp}=\{v \in V: v \perp w \quad \text { for } \quad \text { all } \quad w \in S\}
$$

It is easy to check that

1. S^{\perp} is a subspace of V.
2. $\{0\}^{\perp}=V$ and
3. $V^{\perp}=\{0\}$.
2.13 (Definition and Facts) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}. Let W be a subspace of V. Suppose $v \in V$, we say that $w \in W$ is the orthogonal projection of v to W, if w is nearest to v.
4. There is no guarantee that orthogonal projection exists. But by Part 2 of theorem 2.11, when it exists, orthogonal projection is unique.
5. Also, if $\operatorname{dim}(W)$ is finite, then by Part 3 of theorem 2.11, orthogonal projection always exists.
6. Assume $\operatorname{dim}(W)$ is finite. Define the map

$$
\pi_{W}: V \rightarrow V
$$

where $\pi(v)$ is the orthogonal projection of v in W. The map π_{W} is a linear operator and is called the orthogonal projection of V to W. Clearly, $\pi_{W}^{2}=\pi_{W}$. So, π_{W} is, indeed, a projection.
4. For $v \in V$, let $E(v)=v-\pi_{W}(v)$. Then E is the othrogonal projection of V to W^{\perp}. Proof. By definition of π_{W}, we have, $E(v)=v-\pi_{W}(v) \in$ W^{\perp}. Now, given $v \in V$ and $w^{*} \in W^{\perp}$ we have, $\left(v-E(v), w^{*}\right)=$ $\left(\pi_{W}(v), w^{*}\right)=0$. So, by theorem 2.11, E is the projection to W^{\perp}.

Example. Read Example 14, page 286.
2.14 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}. Let W be a finite dimensional subspace of V. Then π_{W} is a projection and W^{\perp} is the null space of π_{W}. Therefore,

$$
V=W \oplus W^{\perp}
$$

Proof. Obvious.
2.15 (Theorem: Bessel's inequality) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}. Suppose $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthogonal set of non-zero vector. Then, for any element $v \in V$ we have

$$
\sum_{k=1}^{n} \frac{\left|\left(v, v_{k}\right)\right|^{2}}{\left\|v_{k}\right\|^{2}} \leq\|v\|^{2}
$$

Also, the equality holds if and only if

$$
v=\sum_{k=1}^{n} \frac{\left(v, v_{k}\right)}{\left\|v_{k}\right\|^{2}} v_{k}
$$

Proof. We write,

$$
e_{k}=\frac{v_{k}}{\left\|v_{k}\right\|}
$$

and prove that

$$
\sum_{k=1}^{n}\left|\left(v, e_{k}\right)\right|^{2} \leq\|v\|^{2}
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is an orthonormal set. Write $W=\operatorname{Span}\left(\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right)$. By theorem 2.11,

$$
w_{0}=\sum_{k=1}^{n}\left(v, e_{k}\right) e_{k}
$$

is nearest to v in W. So, $\left(v-w_{0}, w_{0}\right)=0$. Therefore,

$$
\|v\|^{2}=\left\|\left(v-w_{0}\right)+w_{0}\right\|^{2}=\left\|\left(v-w_{0}\right)\right\|^{2}+\left\|w_{0}\right\|^{2} .
$$

So,

$$
\|v\|^{2} \geq\left\|w_{0}\right\|^{2}=\sum_{k=1}^{n}\left|\left(v, e_{k}\right)\right|^{2}
$$

Also note that the equality holds if and only if $\left\|\left(v-w_{0}\right)\right\|^{2}=0$ if and only if $v=w_{0}$. So, the proof is complete.

If we apply Bessel's inequality 2.15 to te example 2.5 we get the following inequality.
2.16 (Theorem: Application of Bessel's inequality) For and \mathbb{C}-valued continuous funtion f on $[0,1]$ we have

$$
\sum_{k=-n}^{n}\left|\int_{0}^{1} f(t) \exp (2 \pi i k t) d t\right|^{2} \leq \int_{0}^{1}|f(t)|^{2} d t
$$

Homework: Exercise 1-7, 9, 11 from page 288-289. These are popular problems fro Quals.

3 Linear Functionals and Adjoints

We start with some preliminary comments.
3.1 (Comments and Theorems) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}.

1. Given an element $v \in V$ we can define a linear functional

$$
f_{v}: V \rightarrow \mathbb{F}
$$

by $f_{v}(x)=(x, v)$.
2. The association $F(v)=f_{v}$. defines a natural linear map

$$
F: V \rightarrow V^{*}
$$

3. In fact, F is injective. Proof. Suppose $f_{v}=0$ Then $(x, v)=0$ for all $x \in V$. so, $(v, v)=0$ and hence $v=0$.
4. Now assume that V has finite dimension. Then the natural map F is an isomorphism.
5. Again, assume V has finite dimension n and assume $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis. Let $f \in V^{*}$. Let

$$
v=\sum_{k=0}^{n} \overline{f\left(e_{i}\right)} e_{i} .
$$

Then $f=F(v)=f_{v}$. That means,

$$
f(x)=(x, v) \quad \text { for } \quad \text { all } \quad x \in V .
$$

Proof. We will only check $f\left(e_{1}\right)=\left(e_{1}, v\right)$, which is obvious by orthonormality.
6. Assume the same as in Part 5. Then the association

$$
G(f)=\sum_{k=0}^{n} \overline{f\left(e_{i}\right)} e_{i}
$$

defines the inverse

$$
G: V^{*} \rightarrow V
$$

of F.
7. (Remark.) The map F fails to be isomorphism if V is not finite dimensional. Following is an example that shows F is not on to.
3.2 (Example) Let V be the vector space of polynomial over \mathbb{C}. For $f, g \in$ V define inner product:

$$
(f, g)=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

Note $\int_{0}^{1} t^{j} t^{k} d t=\frac{1}{j+k+1}$. So, if $f(X)=\sum a_{k} X^{k}$ and $g(X)=\sum b_{k} X^{k}$ we have

$$
(f, g)=\sum_{j, k} \frac{1}{j+k+1} a_{j} \overline{b_{k}}
$$

Fix a complex number $z \in \mathbb{C}$. By evaluation at z, we define the functional $L: V \rightarrow \mathbb{C}$ as $L(f)=f(z)$. for any $f \in V$. We claim that L is not in the image of tha map $F: V \rightarrow V^{*}$. In other words, there is no polynomial $g \in V$ such that

$$
f(z)=L(f)=(f, g)=\int_{0}^{1} f(t) \overline{g(t)} d t \quad \text { for } \quad \text { all } \quad f \in V
$$

To prove this suppose there is such a g.
Write $h=X-z$. Given $f \in V$, we have $h f \in V$ and $0=(h f)(z)=L(h f)$. So,

$$
0=L(h f)=(h f, g)=\int_{0}^{1} h(t) f(t) \overline{g(t)} d t \quad \text { for all } \quad f \in V
$$

By substituting $f=(X-\bar{z}) g$ we have

$$
0=\int_{0}^{1}|h(t)|^{2}|g(t)|^{2} d t
$$

Since $h \neq 0$ it follows $g=0$. But $L \neq 0$.

3.1 Adjoint Operatior

3.3 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an finite dimensional inner product space over \mathbb{F}. Suppose $T \in L(V, V)$ is a linear operator. Then, there is a unique linear operator

$$
T^{*}: V \rightarrow V
$$

such that

$$
(T(v), w)=\left(v, T^{*}(w)\right) \quad \text { for } \quad \text { all } \quad v, w \in V .
$$

Definition. This operator T^{*} is called the Adjoint of T.
Proof. Fix and element $w \in V$. Let $\Gamma: V \rightarrow \mathbb{F}$, be defined by the diagram:

That means $\Gamma(v)=(T(v), w)$ for all $v \in V$.
By Part 2 of thorem 3.1, there is an unique element w^{\prime} such that

$$
\Gamma(v)=\left(v, w^{\prime}\right) \quad \text { for } \quad \text { all } \quad v \in V .
$$

That means

$$
(T(v), w)=\left(v, w^{\prime}\right) \quad \text { for } \quad \text { all } \quad v \in V . \quad(E q n-I)
$$

Now, define $T^{*}(w)=w^{\prime}$. It is easy to check that T^{*} is linear (use Eqn-I). Uniqueness also follows from Eqn-I.
3.4 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an finite dimensional inner product space over \mathbb{F}. Suppose $T \in L(V, V)$ is a linear operator. Let e_{1}, \ldots, e_{n} be an orthomormal basis of V. Suppose $T \in L(V, V)$ be a linear operator of V.

1. Write

$$
a_{i j}=\left(T\left(e_{j}\right), e_{i}\right) \quad \text { and } \quad A=\left(a_{i j}\right)
$$

Then A is the matrix of T with respect to e_{1}, \ldots, e_{n}.
2. With respect to e_{1}, \ldots, e_{n}, the matrix of the adjoint T^{*} is the conjugate transpose of the matrix A of T.

Proof. To prove Part 1, we need to prove that
$\left(T\left(e_{1}\right), \ldots, T\left(e_{n}\right)\right)=\left(e_{1}, \ldots, e_{n}\right)\left(\begin{array}{cccc}\left(T\left(e_{1}\right), e_{1}\right) & \left(T\left(e_{2}\right), e_{1}\right) & \ldots\left(T\left(e_{n}\right), e_{1}\right) \\ \left(T\left(e_{1}\right), e_{2}\right) & \left(T\left(e_{2}\right), e_{2}\right) & \ldots\left(T\left(e_{n}\right), e_{2}\right) \\ \ldots & \ldots & \ldots \\ \left(T\left(e_{1}\right), e_{n}\right) & \left(T\left(e_{2}\right), e_{n}\right) & \ldots\left(T\left(e_{n}\right), e_{n}\right)\end{array}\right)$.
This follows because, if $T\left(e_{1}\right)=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{n} e_{n}$, then $\lambda_{i}=\left(T\left(e_{1}\right), e_{i}\right)$.
So, the proof of Part 1 is complete.
Now, by Part 1, them matrix of the adjoint T^{*} is

$$
B=\left(\left(T^{*}\left(e_{j}\right), e_{i}\right)\right)=\left(\overline{\left(e_{i}, T^{*}\left(e_{j}\right)\right)}\right)=\left(\overline{\left(T\left(e_{i}\right), e_{j}\right)}\right)=A^{*}
$$

This completes the proof of Part 2.
3.5 (Theorem: Projection and Adjoint) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an finite dimensional inner product space over \mathbb{F}. Let $E \in L(V, V)$ be an orthogonal projection. Then $E=E^{*}$.

Proof. For any $x, y \in V$, we have
$(E(x), y)=(E(x), E(y)+[y-E(y)])=(E(x), E(y)) \quad$ because $\quad[y-E(y)] \perp W$.
Also
$(E(x), E(y))=(x+[E(x)-x], E(y))=(x, E(y)) \quad$ because $\quad[x-E(x)] \perp W$.
Therefore

$$
(E(x), y)=(x, E(y)) \quad \text { for } \quad \text { all } x, y \in V
$$

Hence $E=E^{*}$.
3.6 (Remarks and Examples) let $V=\mathbb{R}$ and $A \in \mathbb{M}_{n}(\mathbb{R})$ be a symmetric matrix. Let $T \in L(V, V)$ be defined by A. Then $T=T^{*}$. Also note that matrix of T with respect to some other basis may not be symmetric.
Read Example 17-21 from page 294-296.
3.7 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an finite dimensional inner product space over \mathbb{F}. Let $T, U \in L(V, V)$ be two linear operator and $c \in \mathbb{F}$. Then

1. $(T+U)^{*}=T^{*}+U^{*}$,
2. $(c T)^{*}=\bar{c} T^{*}$,
3. $(T U)^{*}=U^{*} T^{*}$,
4. $\left(T^{*}\right)^{*}=T$.

Proof. The proof is direct consequence of the definition (theorem 3.3).
The theorem 3.7 can be phrased as the map

$$
L(V, V) \rightarrow L(V, V)
$$

that sends $T \rightarrow T^{*}$ is conjugate-linear, anti-isomorphism of period two.
3.8 (Definition) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an finite dimensional inner product space over \mathbb{F}. Let $T \in L(V, V)$ be a linear operator and $c \in \mathbb{F}$. We say T is self-adjoint or Hermitian if $T=T^{*}$.

Suppose $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is an orhtonormal basis of V. Let A be the matrix of T with respect to E. Then T is self-adjoint if and only if $A=A^{*}$.

4 Unitary Operators

Let me draw your attention that the expression "isomorphism" means different things in different context - like group isomorphism, vector space isomorphism, module isomorphism. In this section we talk about isomorphisms of inner product spaces.
4.1 (Definition and Facts) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V, W be two inner product spaces over \mathbb{F}. A linear map $T: V \rightarrow W$ is said to preserve inner product if

$$
(T(x), T(y))=(x, y) \quad \text { for } \quad \text { all } \quad x, y \in V
$$

We say T is an an isomorphism of inner product spaces if T preserves inner product and is one to one and onto.
4.2 (Facts) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V, W be two inner product spaces over \mathbb{F}. Let $T: V \rightarrow W$ be a linear map.

1. If T preserves inner product, then

$$
\|T(x)\|=\|x\| \quad \text { for } \quad \text { all } \quad x \in V \text {. }
$$

2. If T preserves inner product, then T is injective (i.e. one to one).
3. If T is an isomorphism of inner product spaces, then T^{-1} is also an isomorphism of inner product spaces.

Proof. Obvious.
4.3 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V, W be two finite dimensional inner product spaces over \mathbb{F}, with $\operatorname{dim} V=\operatorname{dim} W=n$. Let $T: V \rightarrow W$ be a linear map. The the following are equivalent:

1. T preserves inner product,
2. T is an isomorphism of inner product spaces,
3. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of V than $\left\{T\left(e_{1}\right), \ldots, T\left(e_{n}\right)\right\}$ an orthonormal basis of W,
4. There is an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V such that $\left\{T\left(e_{1}\right), \ldots, T\left(e_{n}\right)\right\}$ also an orthonormal basis of W,

Proof. $(1 \Rightarrow 2)$: Since T preserves inner product, T is injective. Also since $\operatorname{dim} V=\operatorname{dim} W$ it follows Hence T is also onto. So Part 2 is established.
$(2 \Rightarrow 3)$: Suppose $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of V. Since also preserves preserves inner product, $\left\{T\left(e_{1}\right), \ldots, T\left(e_{n}\right)\right\}$ is an orthonormal set. Since $\operatorname{dim} W=n$, and since orthonormal set are independent $\left\{T\left(e_{1}\right), \ldots, T\left(e_{n}\right)\right\}$ is a basis of W. So, Part 3 is established.
$(3 \Rightarrow 4)$: Since V has an orthonormal basis Part 4 follows from Part 3.
$(4 \Rightarrow 1)$: Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V such that $\left\{T\left(e_{1}\right), \ldots, T\left(e_{n}\right)\right\}$ also an orthonormal basis of W. Since $\left(T\left(e_{i}\right), T\left(e_{j}\right)\right)=\left(e_{i}, e_{j}\right)$ for all i, j, it follows

$$
(T(x), T(y))=(x, y) \quad \text { for } \quad \text { all } \quad x, y \in V
$$

So, Part 1 is established.
4.4 (Corollary) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V, W be two finite dimensional inner product spaces over \mathbb{F}. Then V and W are isomorphic (as inner product spaces) if and only is $\operatorname{dim} V=\operatorname{dim} W$.

Proof. If V and W are isomorphic then clearly $\operatorname{dim} V=\operatorname{dim} W$. Conversely, if $\operatorname{dim} V=\operatorname{dim} W=n$ then we can find an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V an an orthonormal basis $\left\{E_{1}, \ldots, E_{n}\right\}$ of W. The association

$$
T\left(e_{i}\right)=E_{i}
$$

defines and isomorphism of V to W.
4.5 (Example) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product spaces over \mathbb{F}, with $\operatorname{dim} V=n$. Fix a basis $E=\left\{e_{1}, \ldots, e_{n}\right\}$ of V. Consider the linear map

$$
f: V \rightarrow \mathbb{F}^{n}
$$

given by $f\left(a_{1} e_{1}+\cdots+a_{n} e_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)$. With respect to the usual inner product on \mathbb{F}^{n} this map is an isomorphism of of ineer product spaces if and only if $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis.

Proof. Note that f sends E to the standard basis. So, by theorem $4.3, E$ is orthonormal f is an isomorphism.

Homework: Read Example 23 and 25 from page 301-302.
Question: This refers to Example 25. Let V be the inner product space of all continuous \mathbb{R}-valued functions on $[0,1]$, with inner product

$$
(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

Let $T: V \rightarrow V$ be any linear operator. What can we say about when T perserves inner product?
4.6 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V, W be two inner product spaces over \mathbb{F}. Let $T: V \rightarrow W$ be any linear tansformation. Then T perserves inner product if and only if

$$
\|T(x)\|=\|x\| \quad \text { for } \quad \text { all } \quad x \in V
$$

Proof. If perserves inner product then clearly the condition holds. Now suppose the condition above holds and $x, y \in V$. Then

$$
\|T(x+y)\|^{2}=\|x+y\|^{2}
$$

Since

$$
\|T(x)\|=\|x\| \quad \text { and } \quad\|T(y)\|=\|y\| \text {, }
$$

it follows that

$$
(T(x), T(y))+(T(y), T(x))=(x, y)+(y, x) .
$$

Hence

$$
\operatorname{Re}[(T(x), T(y))]=\operatorname{Re}[(x, y)]
$$

(If $\mathbb{F}=\mathbb{R}$, then the proof is complete.) Also, since Similar arguments with $x-y$, will give

$$
\operatorname{Im}[(w, z)] \quad=\quad \operatorname{Re}[(w, i z)] \quad \text { for all } \quad w, z \in V \quad \text { or } \quad W
$$

the proof is complete.
4.7 (Definition and Facts) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}. An isomorphism $T: V \xrightarrow{\sim} V$ of inner product spaces is said to be an unitary operator on V.

1. Let $\mathcal{U}=\mathcal{U}(n)=\mathcal{U}(V)$ denote the set of all unitary operators on V.
2. The identity $I \in \mathcal{U}(V)$.
3. If $U_{1}, U_{2} \in \mathcal{U}(V)$ then $U_{1} U_{2} \in \mathcal{U}(V)$.
4. If $U \in \mathcal{U}(V)$ then $U^{-1} \in \mathcal{U}(V)$.
5. So, $\mathcal{U}(V)$ is a group under composition. It is a subgroup of the group of linear isomorphisms of V. Notationally

$$
\mathcal{U}(V) \subseteq G L(V) \subseteq L(V, V)
$$

6. If V is finitel dimensional then a linear operator $T \in L(V, V)$ is unitary if and only if T preserves inner product.
4.8 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be an inner product space over \mathbb{F}. Let $U \in L(V, V)$ be a linear operator. Then U is unitary if and only if the adjoint U^{*} of U exists and $U U^{*}=U^{*} U=I$.

Proof. Suppose U is unitary. Then U has an inverse U^{-1}. So, for $x, y \in V$ we have

$$
(U(x), y)=\left(U(x), U U^{-1}(y)\right)=\left(x, U^{-1}(y)\right)
$$

So, U^{*} exists and $U^{*}=U^{-1}$. Conversely, assume the adjoint U^{*} exists and $U U^{*}=U^{*} U=I$. We need to prove that U preserves inner product. For $x, y \in V$ we have

$$
(U(x), U(y))=\left(x, U^{*} U(y)\right)=(x, y)
$$

So, the proof is complete.
Homework: Read example 27, page 304.
4.9 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and A be an $n \times n$ matrix. Let T : $\mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be the linear operator defined bt $T(X)=A X$. With usual inner product on \mathbb{F}^{n}, we have T is unitary if and only if $A^{*} A=I$.

Proof. Suppose $A^{*} A=I$. Then $A^{*} A=A A^{*}=I$. Therefore,

$$
(T(x), T(y))=(A x, A y)=y^{*} A^{*} A x=y^{*} x=(x, y) .
$$

Conversely, suppose T is unitary. Then, $y^{*} A^{*} A x=y^{*} x$ for all $x, y \in \mathbb{F}^{n}$. With appropriate choice of x, y we can show that $A^{*} A=I$. So, the proof is complete.
4.10 (Definition) An $n \times n$ - matrix $A \in \mathbb{M}_{n}(\mathbb{R})$ is called an orthogonal matrix if $A^{t} A=I_{n}$. The subset $O(n) \subseteq \mathbb{M}_{n}(\mathbb{R})$ of all orthognal matrices from a subgroup of $G L_{n}(\mathbb{R})$.

An $n \times n$ - matrix $B \in \mathbb{M}_{n}(\mathbb{C})$ is called an unitary matrix if $B^{*} B=I_{n}$. The subset $\mathcal{U}(n) \subseteq \mathbb{M}_{n}(\mathbb{C})$ of all unitary matrices from a subgroup of $G L_{n}(\mathbb{C})$.
4.11 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Let $U \in L(V, V)$ be a linear operator. Then U is unitary if and only if the matrix of U in with respect to some (or every) orthonormal basis is unitary.

Proof. By theorem 4.8, U is unitary if and only if U^{*} exists and $U U^{*}=$ $U^{*} U U=I$. Suppose $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of V and A be the matrix on U with respect to E. Assume U is unitary. Since $U U^{*}=$ $U^{*} U=I$, we have $A A^{*}=A^{*} A=I$. So A is unitary.

Conversely, assume A is unitary. Then $A A^{*}=A^{*} A=I$. Write $A=\left(a_{i j}\right)$. Therefore $\left(U\left(e_{i}\right), U\left(e_{j}\right)\right)=$

$$
\left(\sum_{k=1}^{n} a_{k i} e_{k}, \sum_{k=1}^{n} a_{k j} e_{k}\right)=\sum_{k=1}^{n}\left(a_{k i} e_{k}, a_{k j} e_{k}\right)=\sum_{k=1}^{n} a_{k i} \overline{a_{k j}}=\delta_{i j}=\left(e_{i}, e_{j}\right)
$$

So, the proof is complete.
4.12 (Exercise) 1. A matrix $A \in \mathbb{M}_{n}(\mathbb{R})$ is orthogonal if and only if $A^{-1}=A^{t}$.
2. A matrix $B \in \mathbb{M}_{n}(\mathbb{C})$ is unitary if and only if $B^{-1}=B^{*}$.
4.13 (Theorem) Suppose $A \in G L_{n}(\mathbb{C})$ be an invertible matrix. Then there is a lower triangular matrix $M \in G L_{n}(\mathbb{C})$ such that $M A \in U_{n}(\mathbb{C})$ and diagonal entries of M are positive. Furhter, such an M is unique.

Proof. Write

$$
A=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\cdots \\
v_{n}
\end{array}\right)
$$

where $v_{i} \in \mathbb{C}^{n}$ are the rows of A. Use Gram-Schmidt orthogonalization (theorem 2.8) and define

$$
e_{k}=\frac{v_{k}-\sum_{j=1}^{k-1}\left(v_{k}, e_{j}\right) e_{j}}{\left\|v_{k}-\sum_{j=1}^{k-1}\left(v_{k}, e_{j}\right) e_{j}\right\|}
$$

Note e_{1}, \ldots, e_{n} is an orthogonalnormal basis of \mathbb{C}^{n}. Also

$$
e_{k}=\sum_{j=1}^{k} c_{k j} v_{j} \quad \text { with } \quad c_{k j} \in \mathbb{C} \quad \text { and } \quad c_{j j} \neq 0
$$

So, we have

$$
\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\cdots \\
e_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
c_{11} & 0 & 0 & \cdots & 0 \\
c_{21} & c_{22} & 0 & \cdots & 0 \\
c_{31} & c_{32} & c_{33} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & 0 \\
c_{n 1} & c_{n 2} & c_{n 3} & \cdots & c_{n n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\cdots \\
v_{n}
\end{array}\right)
$$

Since

$$
\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\cdots \\
e_{n}
\end{array}\right)
$$

unitary, the existance is established.
For uniqueness, assume

$$
U=M B \quad \text { and } \quad U_{1}=N B
$$

where $U, U_{i} \in \mathcal{U}(n)$ and M, N are lower triangular with diagonal entries positive. Then $M N^{-1}=U U_{1}^{-1}$ is unitary. Note that N^{-1} is also a lower triangular matrix with positive diagonal entries. Therefore,

1. $M N^{-1}=\Delta \in \mathcal{U}((n)$,
2. Δ is a diagonal matrix,
3. Diagonal entries of Δ are positive.

Therefore $\Delta=M N^{-1}=I$ and $M=N$. So, the proof is complete.
Homework: Read example 28, page 307.
4.14 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Suppose $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and $\mathcal{E}=\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$ are two orthonormal basesof V. Let $\left(e_{1}, \ldots, e_{n}\right)=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) P$ for some matrix P. Then P is unitary.

Proof. We have

$$
I=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\ldots \\
e_{n}
\end{array}\right)\left(e_{1}, \ldots, e_{n}\right)=\left[P^{t}\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\ldots \\
\epsilon_{n}
\end{array}\right)\right]\left[\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) P\right]
$$

Sorry, this approach is naive and fails because such products (of matrices of vectors and scalars - matrix products and inner products) are not associative. In any case, the correct proof is left as an exercise.
4.15 (Exercise) Consider $V=\mathbb{C}^{n}$, with the usual inner product. Think of the elements of V as row vectors.

Let $v_{1}, v_{2}, \ldots, v_{n} \in V$ and let

$$
A=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\ldots \\
v_{n}
\end{array}\right)
$$

1. Prove that $v_{1}, v_{2}, \ldots, v_{n}$ forms a basis if and only if A invertible.
2. Prove that $v_{1}, v_{2}, \ldots, v_{n}$ forms an orthonormal basis if and only if A an unitary matrix (i.e. $A^{*} A=I$).
3. We can make similar statements about vectors in \mathbb{R}^{n} and orthogonal matrices.

5 Normal Operators

Let V be an inner product space and $T \in L(V, V)$. Main objective of this section is to find necessary and sufficient conditions for T so that there is an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V such that each e_{i} is an eigen vector of T.
5.1 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Let $T \in L(V, V)$ be a linear operator. Suppose $E=\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of V and each e_{i} is an eigen vector of T

1. So, we have $T\left(e_{i}\right)=c_{i} e_{i}$ for some scalars $c_{i} \in \mathbb{F}$.
2. So, the matrix of T with respect to E is the diagonal matrix

$$
\Delta=\operatorname{diagonal}\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

3. If $\mathbb{F}=\mathbb{R}$ then the matrix of the adjoint operator T^{*} is

$$
\Delta^{*}=\Delta=\operatorname{diagonal}\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Therefore, in the real case, a sufficient condition is that T is selfadjoint.
4. If $\mathbb{F}=\mathbb{C}$, the matrix of the adjoint operator T^{*} is

$$
\Delta^{*}=\operatorname{diagonal}\left(\overline{c_{1}}, \overline{c_{2}}, \ldots, \overline{c_{n}}\right)
$$

Therefore

$$
T T^{*}=T^{*} T
$$

So, in complex case, a necessary condition is that T commutes with the adjoint T^{*}.
(Compare with theorem 4.8.)
5.2 (Definition) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Let $T \in L(V, V)$ be a linear operator. We say T is a normal operator, if

$$
T T^{*}=T^{*} T
$$

Therefore, self-adjoint operators are normal.
5.3 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Let $T \in L(V, V)$ be a linear operator. If T is self-adjoint then

1. Eigen values of T are real.
2. Eigen vectors associated to distinct eigen values are orthogonal.

Proof. Suppose $c \in \mathbb{F}$ be an eigen valuea and $e \in V$ be the corresponding eigen vector. Then $T(e)=c e$ and

$$
c(e, e)=(c e, e)=(T(e), e)=\left(e, T^{*}(e)\right)=(e, T(e))=(e, c e)=\bar{c}(e, e)
$$

So, $c=\bar{c}$ and c is real.
Now suppose $T(e)=c e$ and $T(\epsilon)=d \epsilon$ where $c \neq d$ scalars and $e, \epsilon \in V$ be nonzero. Then

$$
c(e, \epsilon)=(c e, \epsilon)=(T(e), \epsilon)=\left(e, T^{*}(\epsilon)\right)=(e, T(\epsilon))=(e, d \epsilon)=\bar{d}(e, \epsilon)
$$

Since $d \neq c$, we have $(e, \epsilon)=0$. So, the proof is complete.
5.4 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Let $T \in L(V, V)$ be a self-adjoint operator. Assume $\operatorname{dim} V>0$. Then T has a (non-zero) eigen vector.

Proof. Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V. Let A be the matrix of T. Since T is self-adjoint, $A=A^{*}$. Now, we deal with real and complex case seperately.
Real Case: Obviously, $A \in \mathbb{M}_{n}(\mathbb{R})$ and $A=A^{*}$ means A is symmetric. In any case, consider the map

$$
U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \quad \text { where } \quad U(X)=A X \quad \text { for } \quad X \in \mathbb{C}^{n}
$$

Since $A=A^{*}$, by theorem $5.3, U$ has only real eigen values. So, $\operatorname{det}(X I-$ $A)=0$ has ONLY real solution. Since \mathbb{C} is algebraically closed, we can pick a real solution $c \in \mathbb{R}$ so that $\operatorname{det}(c I-A)=0$. Therefore, $(c I-A) X=0$ has a real non-zero solution $\left(x_{1}, \ldots, x_{n}\right)^{t} \in \mathbb{R}^{n}$.

Write $e=x_{1} e_{1}+\cdots+x_{n} e_{n}$ then $e \neq 0$ and $T(e)=c e$.
(Note, we went upto \mathbb{C} to get a proof in the real case.)
Complex Case: Proof is same, only easier. Here we know $\operatorname{det}(X I-A)=0$ has a solution $c \in \mathbb{C}$ and the rest of the proof is identical.
5.5 (Exercise) Let V be a finite dimensional inner product space over \mathbb{C}. Let $T \in L(V, V)$ be a self-adjoint operator. Let $Q(X)$ be the characteristic polynomial of T. Then $Q(X) \in \mathbb{R}[X]$.

Proof. We can repeat some of the steps of theorem 5.4. Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V. Let A be the matrix of T. Since T is self-adjoint, $A=A^{*}$. The $Q(X)=\operatorname{det}(X I-A)$. Then

$$
Q(X)=\left(X-c_{1}\right)\left(X-c_{2}\right) \cdots\left(X-c_{n}\right) \quad \text { where } \quad c_{i} \in \mathbb{C} .
$$

By arguments in theorem 5.4, $c_{i} \in \mathbb{R}$, for $i=1, \ldots, n$.
5.6 (Example 29, page 313) Let V be the vector space of continuous \mathbb{C}-valued functions on the interval [0.1]. As usual, for $f, g \in V$, define inner product

$$
(f, g)=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

Let $T: V \rightarrow V$ be the operator defined by $T(f)(t)=t f(t)$.

1. Then T is self-adjoint. This is true because

$$
(t f, g)=(f, t g) \quad \text { for } \quad \text { all } \quad f, g \quad \in V .
$$

2. T has no non-zero eigen vector. Proof. Suppose $f \in V$ and $T(f)=$ $c f$, for some $c \in \mathbb{C}$. Then $t f(t)=c f(t)$ for all $t \in[0,1]$. Since f is continuous, $f=0$.
3. This example shows that theorem 5.4 fails, if V is infinite dimensional.
5.7 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Let $T \in L(V, V)$ be a linear operator. Suppose W is a T-invariant subspace of V. Then the orthogonal complement W^{\perp}, of W, is invariant under T^{*}.

Proof. Let $x \in W$ and $y \in W^{\perp}$. Since, $T(x) \in W$, we have $\left(x, T^{*}(y)\right)=$ $(T(x), y)=0$. So, $T^{*}(y) \in W^{\perp}$.
5.8 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Let $T \in L(V, V)$ be a self-adjoint linear operator. Then V has an orthonormal basis $E=\left\{e_{1}, \ldots, e_{n}\right\}$ such that each e_{i} is an eigen vector of T.

Proof. We assume that $\operatorname{dim} V=n>0$. By theorem 5.4, T has an eigen vector v. Let

$$
e_{1}=\frac{v}{\|v\|}
$$

If $\operatorname{dim} V=1$, we are done. Now we will use induction and assume that the theorem to true for inner product spaces of dimension less than $\operatorname{dim} V$. Write $W=\mathbb{F} e_{1}$ and $V_{1}=W^{\perp}$. Since W is invariant under T, by theorem 5.7, W^{\perp} is invariant under $T^{*}=T$. Therefore, V_{1} has a orthonormal basis $\left\{e_{2}, \ldots, e_{n}\right\}$ such that e_{2}, \ldots, e_{n} are eigen vectors of $T_{\mid V_{1}}$ hence of T. Therefore $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is an orthonormal basis of V and each e_{i} is eigen vectors of of T. So, the proof is complete.
5.9 (Theorem) 1. Let $A \in \mathbb{M}_{n}(\mathbb{C})$ be a Hermitian (self-adjoint) matrix. Then there is unitary matrix P such that $P^{-1} A P=\Delta$ is a diagonal matrix.
2. Let $A \in \mathbb{M}_{n}(\mathbb{R})$ be a symmetric matrix. Then there is orthogonal real matrix P such that $P^{-1} A P=\Delta$ is a diagonal matrix.

Proof. To prove Part 1, consider the operator

$$
T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \quad \text { where } \quad T(X)=A X \quad \text { for } \quad X \in \mathbb{C}^{n}
$$

Since A is Hermitian, so is T. By theorem 5.8, there is an orthonormal basis $E=\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{C}^{n} such that each e_{i} is an eigen vector of T. So, we have

$$
\left(T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)\right)=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \Delta
$$

where $\Delta=\operatorname{diagonal}\left(c_{1}, \ldots, c_{n}\right)$ is a diagonal matrix and $T\left(e_{i}\right)=c_{i} e_{i}$. Suppose $\epsilon_{1}, \ldots, \epsilon_{n}$ is the standard basis of \mathbb{C}^{n}, and

$$
\left(e_{1}, \ldots, e_{n}\right)=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) P
$$

for some matrix $P \in \mathbb{M}_{n}(\mathbb{C})$. Then P is unitary. We also have

$$
\left(T\left(\epsilon_{1}\right), \ldots, T\left(\epsilon_{n}\right)\right)=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) A
$$

Combining all these, we have

$$
A=P \Delta P^{-1}
$$

So, the proof of Part 1 is complete. The proof of Part 2 is similar.

5.1 Regarding Normal Operators

5.10 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Let $T \in L(V, V)$ be a normal operator.

1. Then $\|T(x)\|=\left\|T^{*}(x)\right\|$ for all $x \in V$.
2. Suppose $v \in V$. Then v is an eigen vector of T with eigen value c if and only if v is an eigen vector of T^{*} with eigen value \bar{c}. In other words,

$$
T(v)=c v \quad \Leftrightarrow \quad T^{*}(v)=\bar{c} v .
$$

Proof. We have $T T^{*}=T^{*} T$ and $\|T(x)\|^{2}=$

$$
(T(x), T(x))=\left(x, T^{*} T(x)\right)=\left(x, T T^{*}(x)\right)=\left(T^{*}(x), T^{*}(x)\right)=\left\|T^{*}(x)\right\|^{2}
$$

So, Part 1 is established. To prove Part 2, for a $c \in \mathbb{F}$ write $U=T-c I$. So, $U^{*}=T^{*}-\bar{c} I$. Since $T^{*} T=T T^{*}$, we have $U^{*} U=U U^{*}$. Therefore, by 1,

$$
\|(T-c I)(v)\|=\left\|\left(T^{*}-\bar{c} I\right)(v)\right\| .
$$

Therefore the proof of Part 2 is complete.
5.11 (Definition) A matrix $A \in \mathbb{M}_{n}(\mathbb{C})$ is said to be normal if $A A^{*}=$ $A^{*} A$.
5.12 (Theorem) Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and let V be a finite dimensional inner product space over \mathbb{F}. Let $T \in L(V, V)$ be a linear operator on V. Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis and let A the matrix of T with respect to E. Assume A is upper triangular. Then T is normal if and only if A is diagonal.

Proof. Since E is orthonormal, matrix of T^{*} is A^{*}. Assume A is diagonal. Then $A^{*} A=A A^{*}$. Therefore $T^{*} T=T T^{*}$ and T is normal.

Conversely, assume T is normal. So, $T^{*} T=T T^{*}$ and hence $A^{*} A=A A^{*}$. First, we will assume $n=2$ and prove A is diagonal. Write

$$
A=\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right) \quad \text { and } \quad \text { so } \quad A^{*}=\left(\begin{array}{cc}
\overline{a_{11}} & 0 \\
\overline{a_{12}} & \overline{a_{22}}
\end{array}\right) .
$$

We have

$$
A A^{*}=\left(\begin{array}{cc}
\left|a_{11}\right|^{2}+\left|a_{12}\right|^{2} & a_{12} \overline{a_{22}} \\
a_{22} \overline{a_{12}} & \left|a_{22}\right|^{2}
\end{array}\right)
$$

and

$$
A^{*} A=\left(\begin{array}{cc}
\left|a_{11}\right|^{2} & \overline{a_{11}} a_{12} \\
\overline{a_{12}} a_{11} & \left|a_{12}\right|^{2}+\left|a_{22}\right|^{2}
\end{array}\right)
$$

Since $A A^{*}=A^{*} A$ we have

$$
\left|a_{11}\right|^{2}+\left|a_{12}\right|^{2}=\left|a_{11}\right|^{2} .
$$

Hence $a_{12}=0$ and A is diagonal.
For $n>2$, we finish the proof by similar computations. To see this, write

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right)
$$

Comparing the diagonal entries of of the equation $A A^{*}=A^{*} A$ we get,

$$
\sum_{k=i}^{n}\left|a_{i k}\right|^{2}=\left|a_{i i}\right|^{2}
$$

for $i=1, \ldots, n$. So we have $a_{i k}=0$ for all $k>i$. Therefore, A is a diagonal matrix.
5.13 (Theorem) Let V be a finite dimensional inner product space over \mathbb{C}. Let $T \in L(V, V)$ be a linear operator on V. Then there is an orthonormal basis $E=\left\{e_{1}, \ldots, e_{n}\right\}$ such that the matrix of T with respect to E is upper triangular.

Proof. We will use induction on $\operatorname{dim} V$. Note that theorem is true when $\operatorname{dim} V=1$.

Since \mathbb{C} is algebraically closed, the adjoint T^{*} has an eigen vector $v \neq 0$. Write $e=v /\|v\|$. The e is an eigen vector of T^{*}, and

$$
T^{*}(e)=c e \quad \text { for } \quad \text { some } \quad c \in \mathbb{C} .
$$

Let

$$
W=\mathbb{C} e \quad \text { and } \quad V_{1}=W^{\perp}
$$

Since W is T^{*}-invariant, by theorem 5.7, V_{1} is T-invariant. Let $T_{1}=T_{V_{1}}$ be the restriction of T. Then $T_{1} \in L\left(V_{1}, V_{1}\right)$.

By induction, there is an orthonormal basis $E=\left\{e_{1}, \ldots, e_{n-1}\right\}$ of V_{1} such that the matrix of T_{1} with respect to E is upper triangular. Write $e_{n}=e$. then the matrix of T with respet to $E_{0}=\left\{e_{1}, \ldots, e_{n-1}, e_{n}\right\}$ is upper triangular.
5.14 Let $A \in \mathbb{M}_{n}(\mathbb{C})$ be any matrix. Then there is an unitary matrix $U \in \mathcal{U}\left((n) \subseteq \mathbb{M}_{n}(\mathbb{C})\right.$, such that $U^{-1} A U$ is upper-triangular.

Proof. Proof is an immediate application of theorem 5.13 to the map $\mathbb{C}^{n} \rightarrow$ \mathbb{C}^{n} defined by the matrix A.
5.15 (Theorem) Let V be a finite dimensional inner product space over \mathbb{C}. Let $T \in L(V, V)$ be a normal operator on V. Then there is an orthonormal basis $E=\left\{e_{1}, \ldots, e_{n}\right\}$ such that each e_{i} is an eigen vector of T.

Proof. By theorem 5.13, V has an orthonormal basis $E=\left\{e_{1}, \ldots, e_{n}\right\}$ such that that matrix A of T with respect to E is upper-triangular.

Since T is normal, by therem 5.12, A is diagonal. Therefore e_{i} is an eigen vector of T.

The following is the matrix version of this theorem 5.15.
5.16 Let $A \in \mathbb{M}_{n}(\mathbb{C})$ be a NORMAL matrix. Then there is an unitary matrix $U \in \mathcal{U}(n) \subseteq \mathbb{M}_{n}(\mathbb{C})$, such that $U^{-1} A U$ is diagonal.

Proof. Proof is an immediate application of theorem 5.15 to the map $\mathbb{C}^{n} \rightarrow$ \mathbb{C}^{n} defined by the matrix A.

