## MFCS 2017 Mock Test Questions

1. Suppose $T$ be a linear operator on $\mathbf{R}^{3}$ such that $[1,1,-1]^{T},[1,-1,1]^{T}$ and $[-1,1,1]^{T}$ are Eigen vectors of $T$ with Eigen values $1,-1$ and 0 . What is the matrix of $T$ with respect to the standard basis?
2. Let $T$ be a linear transformation from $V$ to $W$, where $V, W$ are vector spaces over some field $F$. Let $v_{0} \in V$. Show that for any $v \in V, T(v)=T\left(v_{0}\right)$ if and only if $v=v_{0}+w$ for some $w \in \operatorname{ker}(T)$.
3. Let $(R,+, ., 0,1)$ be a finite integral domain. Show that for any $a \in R \backslash\{0\}$, there exists $b \in R$ such that $a . b=1$.
4. Let $V, W$ be vector spaces over a field $F$. Let $T: V \mapsto W$ be a linear transformation. Let $b_{1}, b_{2}, \cdots b_{n}$ be a basis of $V$. Prove that
5. $T\left(b_{1}\right), T\left(b_{2}\right), \cdots, T\left(b_{n}\right)$ is linearly independent if and only if $T$ is injective.
6. $\operatorname{SPAN}\left(T\left(b_{1}\right), T\left(b_{2}\right), \cdots, T\left(b_{n}\right)\right)=W$ if and only if $T$ is surjective.
(Answer on the reverse side).
