MFCS 2017 Mock Test Questions

1. Suppose T be a linear operator on \mathbb{R}^3 such that $[1, 1, -1]^T, [1, -1, 1]^T$ and $[-1, 1, 1]^T$ are Eigen vectors of T with Eigen values 1, -1 and 0. What is the matrix of T with respect to the standard basis?

3

3

3

2. Let T be a linear transformation from V to W, where V, W are vector spaces over some field F. Let $v_0 \in V$. Show that for any $v \in V$, $T(v) = T(v_0)$ if and only if $v = v_0 + w$ for some $w \in ker(T)$.

3. Let (R, +, ., 0, 1) be a finite integral domain. Show that for any $a \in R \setminus \{0\}$, there exists $b \in R$ such that a.b = 1.

- 4. Let V, W be vector spaces over a field F. Let $T: V \mapsto W$ be a linear transformation. Let b_1, b_2, \dots, b_n 3+3 be a basis of V. Prove that
 - 1. $T(b_1), T(b_2), \dots, T(b_n)$ is linearly independent if and only if T is injective. 2. SPAN $(T(b_1), T(b_2), \dots, T(b_n)) = W$ if and only if T is surjective.
 - (Answer on the reverse side).