Computational Complexity Exercise 1

- 1. Show that if any NP-complete language L is in co-NP, then co-NP=NP.
- 2. Show that if g(n) = o(f(n)), $f(n) \ge \log n$ space constructible, then Nspace $(g(n)) \ne$ Nspace $(f(n) \log f(n))$. (Hint: Let $L \in \text{Nspace}(g(n))$. Assume that you have two nondeterministic machines M and \overline{M} , each using O(g(n)) space accepting L and \overline{L} (why should such machines exist?). Now you can use these machines to do a diagonal argument as in the proof of the deterministic space hierarchy theorem).
- 3. Define **polyL** as $\bigcup_i Dspace(\log^i n)$. Steve's class $\mathbf{SC} = \{L : \exists \text{ constants } k, l \text{ and a deterministic Turing machine } M$ such that M accepts L in $O(n^k)$ space and $O(\log^l n)$ time $\}$ Why does it NOT follow from the definition that $\mathbf{SC} = \mathbf{PolyL}$ or $\mathbf{SC} = \mathbf{polyL} \cap \mathbf{P}$?
- 4. We have defined **NP** as $\bigcup_{i\geq 0}$ NTIME (n^i) . Here is an alternative definition. We define **NP** to be the class of all languages $L \subseteq \Sigma^*$ such that there is a deterministic Turing machine M that runs in time polynomial in the size of its input and an integer k such that if $x \in L$ then there exists $y \in \Sigma^*$ with $|y| \leq |x|^k$ and M(x,y) = 1 whereas, if $x \notin L$, for all $y \in \Sigma^*$ M(x,y) = 0. This is the *certificate* characterization of the class **NP** (See Korman et.al., Introduction to algorithms for a treatment of NP-completeness using this definition). Show that the two definitions are equivalent. (i.e., show that for any language $L \in \mathbf{NP}$, such machine M exists and conversely, given such M, we can construct a polynomial time NDTM M' for accepting $\{x : \exists y, |y| \leq |x|^k M(x,y) = 1\}$.
- 5. Let $L \in NTIME(2^{n^c})$ for some constant c > 0. Define the language $L_{pad} = \{(x, 1^z) : x \in L, z = 2^{|x|^c}\}$. Show that $L_{pad} \in \mathbf{NP}$. Using the above observation argue that if **NEXP** $\neq \mathbf{EXP}$ then $\mathbf{P} \neq \mathbf{NP}$. The technique used in this proof is called *padding argument*.
- 6. Here is another question using the padding argument. Let L be any language and k any positive integer. Define $L_{pad} = \{x \# 0^l : x \in L, |x| + l + 1 = |x|^k\}$. Show that $L \in \mathbf{P}$ if and only if $L_{pad} \in \mathbf{P}$. Using this result, argue that $P \neq Dspace(n)$. Using Savitch theorem, extend the arguments to prove that $Nspace(n) \neq \mathbf{P}$. (Use the stronger version of the non-deterministic space hierarchy theorem proved in the second question).
- 7. Prove that $\mathbf{PolyL} \neq \mathbf{P}$