
29 Hardness of Approximation

A remarkable achievement of the theory of exact algorithms is that it has
provided a fairly complete characterization1 of the intrinsic complexity of
natural computational problems, modulo some strongly believed conjectures.
Recent impressive developments raise hopes that we will some day have a
comprehensive understanding of the approximability of NP-hard optimiza-
tion problems as well. In this chapter we will give a brief overview of these
developments.

Current hardness results fall into three important classes. For minimiza-
tion problems, the hardness factors for these classes are constant (> 1),
Ω(log n), and nε for a fixed constant ε > 0, where n is the size of the instance.
For maximization problems, the factors are constant (< 1), O(1/ log n), and
1/nε for a fixed ε > 0. In this chapter we will present hardness results for
MAX-3SAT, vertex cover, and Steiner tree in the first class, set cover in the
second class, and clique in the third class. For all these problems, we will
establish hardness for their cardinality versions, i.e., the unit cost case.

29.1 Reductions, gaps, and hardness factors

Let us start by recalling the methodology for establishing hardness results
for exact optimization problems. The main technical core is the Cook–Levin
theorem which establishes the hardness, assuming P �= NP, of distinguishing
between instances of SAT that are satisfiable and those that are not. To show
hardness of computing an optimal solution to, say the cardinality vertex cover
problem, one shows, via a polynomial time reduction from SAT, that it is hard
to distinguish between graphs that have covers of size at most k from graphs
that don’t, where k is provided as part of the input. Since an exact algorithm
can make this distinction, this reduction establishes the non-existence of an
efficient exact algorithm.

The main technical core of hardness of approximation results is the PCP
theorem, which is stated in Section 29.2. For establishing a hardness of ap-
proximation result for, say, the vertex cover problem, this theorem is used to
1 A few (important) exceptions, such as the graph isomorphism problem, remain

uncharacterized.
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show the following polynomial time reduction. It maps an instance φ of SAT
to a graph G = (V, E) such that

• if φ is satisfiable, G has a vertex cover of size ≤ 2
3 |V |, and

• if φ is not satisfiable, the smallest vertex cover in G is of size > α · 2
3 |V |,

where α > 1 is a fixed constant.

Claim 29.1 As a consequence of the reduction stated above, there is no poly-
nomial time algorithm for vertex cover that achieves an approximation guar-
antee of α, assuming P �= NP.

Proof: Essentially, this reduction establishes the hardness, assuming P �=
NP, of distinguishing graphs having a cover of size ≤ 2

3 |V | from those having
a cover of size > α· 2

3 |V |. An approximation algorithm for vertex cover, having
a guarantee of α or better, will find a cover of size ≤ α · 2

3 |V | when given
a graph G from the first class. Thus, it will be able to distinguish the two
classes of graphs, leading to a contradiction. ✷

The reduction stated above introduces a gap, of factor α, in the optimal
objective function value achieved by the two classes of graphs (if α = 1 then
this is an ordinary polynomial time reduction from SAT to vertex cover).
Let us formally state the central notion of a gap-introducing reduction. The
definition is slightly different for minimization and maximization problems.
For simplicity, let us assume that we are always reducing from SAT.

Let Π be a minimization problem. A gap-introducing reduction from SAT
to Π comes with two parameters, functions f and α. Given an instance φ of
SAT, it outputs, in polynomial time, an instance x of Π, such that

• if φ is satisfiable, OPT(x) ≤ f(x), and
• if φ is not satisfiable, OPT(x) > α(|x|) · f(x).

Notice that f is a function of the instance (such as 2
3 |V | in the example

given above), and α is a function of the size of the instance. Since Π is a
minimization problem, the function α satisfies α(|x|) ≥ 1.

If Π is a maximization problem, we want the reduction to satisfy

• if φ is satisfiable, OPT(x) ≥ f(x), and
• if φ is not satisfiable, OPT(x) < α(|x|) · f(x).

In this case, α(|x|) ≤ 1. The gap, α(|x|), is precisely the hardness factor
established by the gap-introducing reduction for the NP-hard optimization
problem.

Once we have obtained a gap-introducing reduction from SAT (or any
other NP-hard problem) to an optimization problem, say Π1, we can prove
a hardness result for another optimization problem, say Π2, by giving a spe-
cial reduction, called a gap-preserving reduction, from Π1 to Π2. Now there
are four possibilities, depending on whether Π1 and Π2 are minimization or
maximization problems. We give the definition below assuming that Π1 is



308 29 Hardness of Approximation

a minimization problem and Π2 is a maximization problem. The remaining
cases are similar.

A gap-preserving reduction, Γ , from Π1 to Π2 comes with four parame-
ters (functions), f1, α, f2, and β. Given an instance x of Π1, it computes, in
polynomial time, an instance y of Π2 such that

• OPT(x) ≤ f1(x) ⇒ OPT(y) ≥ f2(y),
• OPT(x) > α(|x|)f1(x) ⇒ OPT(y) < β(|y|)f2(y).

Observe that x and y are instances of two different problems, and so it would
be more appropriate to write OPTΠ1(x) and OPTΠ2(y) instead of OPT(x)
and OPT(y), respectively. However, we will avoid this extra notation, since
the context clarifies the problems being talked about. In keeping with the
fact that Π1 is a minimization problem and Π2 is a maximization problem,
α(|x|) ≥ 1 and β(|y|) ≤ 1.

Composing a gap-introducing reduction with a gap-preserving reduction
gives a gap-introducing reduction, provided all the parameters match up. For
example, suppose that in addition to the reduction Γ defined above, we have
obtained a gap-introducing reduction, Γ �, from SAT to Π1, with parameters
f1 and α. Then, composing Γ � with Γ , we get a gap-introducing reduction
from SAT to Π2, with parameters f2 and β. This composed reduction shows
that there is no β(|y|) factor approximation algorithm for Π2, assuming P �=
NP. In each gap-preserving reduction stated below, we will take special care
to ensure that the parameters match up.

Remark 29.2

• The “gap” β can, in general, be bigger or smaller than α. In this sense,
“gap-preserving” is a slight misnomer.

• We do not require any guarantee from reduction Γ if instance x of Π1 falls
in the first gap, i.e., satisfies f1(x) < OPT(x) ≤ α(|x|)f1(x).

• An approximation algorithm for Π2 together with a gap-preserving re-
duction Γ from Π1 to Π2 does not necessarily yield an approximation
algorithm for Π1. Observe the contrast with an approximation factor pre-
serving reduction (see Section A.3.1 for definition). The latter reduction
additionally requires a means of transforming a near-optimal solution to
the transformed instance y of Π2 into a near-optimal solution to the given
instance x of Π1.
On the other hand, Γ together with an appropriate gap-introducing reduc-
tion from SAT to Π1 does suffice for proving a hardness of approximation
result for Π2. Obviously the less stringent requirement on gap-preserving
reductions makes them easier to design.

• We have already presented some gap-introducing reductions, e.g., Theo-
rems 3.6 and 5.7. The reader may wonder why these do not suffice as the
starting point for further hardness results and why the PCP theorem was
needed. The reason is that these reductions simply exploit the freedom to
choose edge costs and not the deep combinatorial structure of the problem.
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The following figure shows the gap-preserving reductions presented in this
chapter:
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29.2 The PCP theorem

Probabilistic characterizations of the class NP yield a general technique for
obtaining gap-introducing reductions. The most useful of these character-
izations is captured in the PCP theorem. PCP stands for probabilistically
checkable proof systems.

Recall the usual definition of NP (see Appendix A) as the class of lan-
guages whose yes instances support short (polynomial in the length of the
input) witnesses that can be verified quickly (in polynomial time). Informally,
a probabilistically checkable proof for an NP language encodes the witness
in a special way so that it can be verified probabilistically by examining very
few of its bits.

A probabilistically checkable proof system comes with two parameters,
the number of random bits required by the verifier, and the number of bits of
the witness that the verifier is allowed to examine. In keeping with established
terminology, let us call a witness string the proof. The most useful setting
for these parameters is O(log n) and O(1), respectively. This defines the class
PCP(log n, 1).

The verifier is a polynomial time Turing machine which, besides its input
tape and work tape, has a special tape that provides it with a string of
random bits and another special tape on which it is provided with the proof.
The machine can read any bit of the proof by simply specifying its location.
Of course, the particular locations it examines are a function of the input
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string and the random string. At the end of its computation, the machine
goes into either an accept state or a reject state.
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A language L ∈ PCP(log n, 1) if there is a verifier V , and constants c and
q, such that on input x, V obtains a random string, r, of length c log |x| and
queries q bits of the proof. Furthermore,

• if x ∈ L, then there is a proof y that makes V accept with probability 1,
• if x /∈ L, then for every proof y, V accepts with probability < 1/2,

where the probability is over the random string r. The probability of accepting
in case x /∈ L is called the error probability.

In general, for two functions r(n) and q(n), we can define the class
PCP(r(n), q(n)), under which the verifier obtains O(r(n)) random bits and
queries O(q(n)) bits of the proof. The acceptance criteria for input strings
are the same as above. In this terminology, NP = PCP(0, poly(n)), where
poly(n) =

�

k≥0{nk}. In this case, the verifier is not allowed any random bits.
It must deterministically accept strings in the language and reject strings not
in the language, as in the definition of NP. The PCP theorem gives another
characterization of NP.

Theorem 29.3 NP = PCP(log n, 1).

One half of this theorem, that PCP(log n, 1) ⊆ NP, is easy to prove (see
Exercise 29.1). The other half, that NP ⊆ PCP(log n, 1), is a difficult result,
and gives a useful tool for establishing hardness of approximation results. The
currently known proof of this half is too complicated for exposition in this
book. Fortunately, the statement of the theorem is sufficient to derive the
hardness results.

In order to provide the reader with some feel for the PCP theorem, let us
make an observation. It is easy to construct a verifier for 3SAT whose error
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probability (i.e., probability of accepting unsatisfiable formulae) is ≤ 1−1/m,
where m is the number of clauses in the input 3SAT formula, say φ. The
verifier expects a satisfying truth assignment to φ as the proof. It uses the
O(log n) random bits to pick a random clause of φ. It then reads the truth
assignments for the three variables occurring in this clause. Notice that this is
only a constant number of bits. It accepts iff the truth setting for these three
variables satisfies the clause. Clearly, if φ is satisfiable, there is a proof that
makes the verifier accept with probability 1, and if φ is not satisfiable, on
every proof, the verifier accepts with probability ≤ 1 − 1/m. The interesting
and difficult part of the PCP theorem is decreasing the error probability to
< 1/2, even though the verifier is allowed to read only a constant number of
bits of the proof. It involves a complex algebraic construction that ensures
that small parts of the proof depend on every bit of the input.

The PCP theorem directly gives an optimization problem – in particular,
a maximization problem – for which there is no factor 1/2 approximation
algorithm, assuming P �= NP.

Problem 29.4 (Maximize accept probability) Let V be a PCP(log n, 1)
verifier for SAT. On input φ, a SAT formula, find a proof that maximizes the
probability of acceptance of V .

Claim 29.5 Assuming P �= NP, there is no factor 1/2 approximation algo-
rithm for Problem 29.4.

Proof: If φ is satisfiable, then there is a proof that makes V accept with
probability 1, and if φ is not satisfiable, then on every proof, V accepts with
probability < 1/2. Suppose there is a factor 1/2 approximation algorithm for
Problem 29.4. If φ is satisfiable, then this algorithm must provide a proof
on which V ’s acceptance probability is ≥ 1/2. The acceptance probability
can be computed in polynomial time, by simply simulating V for all random
strings of length O(log n). Thus, this approximation algorithm can be used
for deciding SAT in polynomial time, contradicting the assumption P �= NP.
✷

Claim 29.5 directly gives the following corollary. In subsequent sections,
we will use the PCP theorem to obtain hardness results for natural compu-
tational problems. A similar corollary follows in each case.

Corollary 29.6 Assuming P �= NP, there is no PTAS for Problem 29.4.

29.3 Hardness of MAX-3SAT

MAX-3SAT is the restriction of MAX-SAT (see Problem 16.1) to instances in
which each clause has at most three literals. This problem plays a similar role
in hardness of approximation as 3SAT plays in the theory of NP-hardness,
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as a “seed” problem from which reductions to numerous other problems have
been found. The main result of this section is:

Theorem 29.7 There is a constant εM > 0 for which there is a gap-
introducing reduction from SAT to MAX-3SAT that transforms a Boolean
formula φ to ψ such that

• if φ is satisfiable, OPT(ψ) = m, and
• if φ is not satisfiable, OPT(ψ) < (1 − εM )m,

where m is the number of clauses in ψ.

Corollary 29.8 There is no approximation algorithm for MAX-3SAT with
an approximation guarantee of 1 − εM , assuming P �= NP, where εM > 0 is
the constant defined in Theorem 29.7.

The exact solution of MAX-3SAT is shown hard under the assumption
P �= NP. It is interesting to note that hardness of approximate solution of
MAX-3SAT is also being established under the same assumption.

For clarity, let us break the proof into two parts. We will first prove
hardness for the following problem.

Problem 29.9 (MAX k-FUNCTION SAT) Given n Boolean variables
x1, . . . , xn and m functions f1, . . . , fm, each of which is a function of k of the
Boolean variables, find a truth assignment to x1, . . . , xn that maximizes the
number of functions satisfied. Here k is assumed to be a fixed constant. Thus,
we have a class of problems, one for each value of k.

Lemma 29.10 There is a constant k for which there is a gap-introducing
reduction from SAT to MAX k-FUNCTION SAT that transforms a Boolean
formula φ to an instance I of MAX k-FUNCTION SAT such that

• if φ is satisfiable, OPT(I) = m, and
• if φ is not satisfiable, OPT(I) < 1

2m,

where m is the number of formulae in I.

Proof: Let V be a PCP(log n, 1) verifier for SAT, with associated param-
eters c and q. Let φ be an instance of SAT of length n. Corresponding to
each string, r, of length c log n (the “random” string), V reads q bits of the
proof. Thus, V reads a total of at most qnc bits of the proof. We will have
a Boolean variable corresponding to each of these bits. Let B be the set of
Boolean variables. Thus, the relevant part of each proof corresponds to a
truth assignment to the variables in B.

We will establish the lemma for k = q. Corresponding to each string r,
we will define a Boolean function, fr. This will be a function of q variables
from B. The acceptance or rejection of V is of course a function of φ, r, and
the q bits of the proof read by V . For fixed φ and r, consider the restriction
of this function to the q bits of the proof. This is the function fr.
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Clearly, there is a polynomial time algorithm which, given input φ, out-
puts the m = nc functions fr. If φ is satisfiable, there is a proof that makes
V accept with probability 1. The corresponding truth assignment to B sat-
isfies all nc functions fr. On the other hand, if φ is not satisfiable, then on
every proof, V accepts with probability < 1/2. Thus, in this case every truth
assignment satisfies < 1

2nc of these functions. The lemma follows. ✷

Proof of Theorem 29.7: Using Lemma 29.10 we transform a SAT formula
φ to an instance of MAX k-FUNCTION SAT. We now show how to obtain
a 3SAT formula from the nc functions.

Each Boolean function fr constructed in Lemma 29.10 can be written
as a SAT formula, say ψr, containing at most 2q clauses. Each clause of ψr

contains at most q literals. Let ψ be the SAT formula obtained by taking the
conjunct of all these formulae, i.e., ψ =

�

r ψr.
If a truth assignment satisfies formula fr, then it satisfies all clauses of

ψr. On the other hand, if it does not satisfy fr, then it must leave at least one
clause of ψr unsatisfied. Therefore, if φ is not satisfiable, any truth assignment
must leave > 1

2nc clauses of ψ unsatisfied.
Finally, let us transform ψ into a 3SAT formula. This is done using the

standard trick of introducing new variables to obtain small clauses from a
big clause. Consider clause C = (x1 ∨ x2 ∨ . . . ∨ xk), with k > 3. Introduce
k − 2 new Boolean variables, y1, . . . , yk−2, and consider the formula

f = (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2) ∧ . . . ∧ (yk−2 ∨ xk−1 ∨ xk).

Let τ be any truth assignment to x1, . . . , xk. If τ satisfies C, then it can be
extended to a truth assignment satisfying all clauses of f . On the other hand,
if τ does not satisfy C, then for every way of setting y1, . . . , yk−2, at least
one of the clauses of f remains unsatisfied.

We apply this construction to every clause of ψ containing more than 3 lit-
erals. Let ψ� be the resulting 3SAT formula. It contains at most nc2q(q − 2)
clauses. If φ is satisfiable, then there is a truth assignment satisfying all
clauses of ψ�. If φ is not satisfiable, > 1

2nc of the clauses remain unsatis-
fied, under every truth assignment. Setting εM = 1/(2q+1(q − 2)) gives the
theorem. ✷

29.4 Hardness of MAX-3SAT with bounded occurrence
of variables

For each fixed k, define MAX-3SAT(k) to be the restriction of MAX-3SAT
to Boolean formulae in which each variable occurs at most k times. This
problem leads to reductions to some key optimization problems.
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Theorem 29.11 There is a gap preserving reduction from MAX-3SAT to
MAX-3SAT(29) that transforms a Boolean formula φ to ψ such that

• if OPT(φ) = m, then OPT(ψ) = m�, and
• if OPT(φ) < (1 − εM )m, then OPT(ψ) < (1 − εb)m�,

where m and m� are the number of clauses in φ and ψ, εM is the constant
determined in Theorem 29.7, and εb = εM/43.

Proof: The proof critically uses expander graphs. Recall, from Section 20.3,
that graph G = (V,E) is an expander if every vertex has the same degree,
and for any nonempty subset S ⊂ V ,

|E(S, S)| > min(|S|, |S|),

where E(S, S) denotes the set of edges in the cut (S, S), i.e., edges that have
one endpoint in S and the other in S. Let us assume that such graphs are
efficiently constructible in the following sense. There is an algorithm A and a
constant N0 such that for each N ≥ N0, A constructs a degree 14 expander
graph on N vertices in time polynomial in N (Remark 29.12 clarifies this
point).

Expanders enable us to construct the following device whose purpose is to
ensure that in any optimal truth assignment, a given set of Boolean variables
must have consistent assignment, i.e., all true or all false. Let k ≥ N0, and
let Gx be a degree 14 expander graph on k vertices. Label the vertices with
distinct Boolean variables x1, . . . , xk. We will construct a CNF formula ψx

on these Boolean variables. Corresponding to each edge (xi, xj) of Gx, we
will include the clauses (xi ∨ xj) and (xj ∨ xi) in ψx. A truth assignment
to x1, . . . , xk is said to be consistent if either all the variables are set to
true or all are set to false. An inconsistent truth assignment partitions the
vertices of Gx into two sets, say S and S. Assume w.l.o.g. that S is the
smaller set. Now, corresponding to each edge in the cut (S, S), ψx will have
an unsatisfied clause. Therefore, the number of unsatisfied clauses, |E(S, S)|,
is at least |S| + 1. We will use this fact critically.

Next, we describe the reduction. We may assume w.l.o.g. that every vari-
able occurs in φ at least N0 times. If not, we can replicate each clause N0
times without changing the approximability properties of the formula in any
essential way.

Let B denote the set of Boolean variables occurring in φ. For each variable
x ∈ B, we will do the following. Suppose x occurs k ≥ N0 times in φ. Let
Vx = {x1, . . . , xk} be a set of completely new Boolean variables. Let Gx be a
degree 14 expander graph on k vertices. Label its vertices with variables from
Vx and obtain formula ψx as described above. Finally, replace each occurrence
of x in φ by a distinct variable from Vx. After this process is carried out for
each variable x ∈ B, every occurrence of a variable in φ is replaced by a
distinct variable from the set of new variables
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V =
�

x∈B

Vx.

Let φ� be the resulting formula. In addition, corresponding to each variable
x ∈ B, a formula ψx has been constructed.

Finally, let

ψ = φ� ∧ (
�

x∈B

ψx).

Observe that for each x ∈ B, each variable of Vx occurs exactly 29 times
in ψ – once in φ�, and 28 times in ψx. Therefore, ψ is an instance of MAX-
3SAT(29). We will say that the clauses of φ� are Type I clauses, and the
remaining clauses of ψ are Type II clauses.

Now, the important claim is that an optimal truth assignment for ψ must
satisfy all Type II clauses, and therefore must be consistent for each set
Vx, x ∈ B. Suppose that this is not the case. Let τ be an optimal truth
assignment that is not consistent for Vx, for some x ∈ B. τ partitions the
vertices of Gx into two sets, say S and S, with S being the smaller set. Now,
flip the truth assignment to variables in S, keeping the rest of the assignment
the same as τ . As a result, some Type I clauses that were satisfied under
τ may now be unsatisfied. Each of these must contain a variable of S, and
so their number is at most |S|. On the other hand we get at least |S| + 1
new satisfied clauses corresponding to the edges in the cut (S, S). Thus, the
flipped assignment satisfies more clauses than τ , contradicting the optimality
of τ .

Let m and m� be the number of clauses in φ and ψ. The total number of
occurrences of all variables in φ is at most 3m. Each occurrence participates
in 28 Type II two-literal clauses, giving a total of at most 42m Type II clauses.
In addition, ψ has m Type I clauses. Therefore, m� ≤ 43m.

If φ is satisfiable, then so is ψ. Next, consider the case that OPT(φ) <
(1 − εM )m, i.e., > εMm clauses of φ remain unsatisfied under any truth
assignment. If so, by the above claim, > εMm ≥ εMm�/43 of the clauses of
ψ must remain unsatisfied. The theorem follows. ✷

Remark 29.12 The assumption about the efficient construction of expander
graphs is slightly untrue. It is known that for each N ≥ N0, an expander of
size ≤ N(1+o(1)) can be constructed efficiently (see Section 29.9). The reader
can verify that this does not change the status of Theorem 29.11.

Exercise 29.4 extends Theorem 29.11 to establishing hardness for MAX-
3SAT(5).
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29.5 Hardness of vertex cover and Steiner tree

In this section, we will apply the machinery developed above to some graph
theoretic problems. For integer d ≥ 1, let VC(d) denote the restriction of the
cardinality vertex cover problem to instances in which each vertex has degree
at most d.

Theorem 29.13 There is a gap preserving reduction from MAX-3SAT(29)
to VC(30) that transforms a Boolean formula φ to a graph G = (V, E) such
that

• if OPT(φ) = m, then OPT(G) ≤ 2
3 |V |, and

• if OPT(φ) < (1 − εb)m, then OPT(G) > (1 + εv) 2
3 |V |,

where m is the number of clauses in φ, εb is the constant determined in
Theorem 29.11, and εv = εb/2.

Proof: Assume w.l.o.g. that each clause of φ has exactly 3 literals (this can
be easily accomplished by repeating the literals within a clause, if necessary).
We will use the standard transformation. Corresponding to each clause of
φ, G has 3 vertices. Each of these vertices is labeled with one literal of the
clause. Thus, |V | = 3m. G has two types of edges (see the illustration below):

• for each clause, G has 3 edges connecting its 3 vertices, and
• for each u, v ∈ V , if the literals labeling u and v are negations of each

other, then (u, v) is an edge in G.

Each vertex of G has two edges of the first type and at most 28 edges of the
second type. Hence, G has degree at most 30.

We claim that the size of a maximum independent set in G is precisely
OPT(φ). Consider an optimal truth assignment and pick one vertex, corre-
sponding to a satisfied literal, from each satisfied clause. Clearly, the picked
vertices form an independent set. Conversely, consider an independent set I in
G, and set the literals corresponding to its vertices to be true. Any extension
of this truth setting to all variables must satisfy at least |I| clauses.

The complement of a maximum independent set in G is a minimum vertex
cover. Therefore, if OPT(φ) = m then OPT(G) = 2m. If OPT(φ) < (1−εb)m,
then OPT(G) > (2 + εb)m. The theorem follows. ✷

As an illustration, consider the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
The graph produced by the reduction given in Theorem 29.13 is given below:
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Theorem 29.14 There is a gap preserving reduction from VC(30) to the
Steiner tree problem. It transforms an instance G = (V, E) of VC(30) to an
instance H = (R, S, cost) of Steiner tree, where R and S are the required and
Steiner vertices of H, and cost is a metric on R ∪ S. It satisfies:

• if OPT(G) ≤ 2
3 |V |, then OPT(H) ≤ |R| + 2

3 |S| − 1, and
• if OPT(G) > (1 + εv) 2

3 |V |, then OPT(H) > (1 + εs)(|R| + 2
3 |S| − 1),

where εs = 4εv/97, and εv is the constant determined in Theorem 29.13.

Proof: Graph H = (R, S, cost) will be such that G has a vertex cover of size
c iff H has a Steiner tree of cost |R| + c − 1. H will have a required vertex re

corresponding to each edge e ∈ E and a Steiner vertex sv corresponding to
each vertex v ∈ V . The edge costs are as follows. An edge between a pair of
Steiner vertices is of cost 1, and an edge between a pair of required vertices
is of cost 2. An edge (re, sv) is of cost 1 if edge e is incident at vertex v in G,
and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c iff H has a Steiner tree of
cost |R|+c−1. For the forward direction, let Sc be the set of Steiner vertices
in H corresponding to the c vertices in the cover. Observe that there is a tree
in H covering R ∪ Sc using cost 1 edges only (since every edge e ∈ E must
be incident at a vertex in the cover). This Steiner tree has cost |R| + c − 1.

For the reverse direction, let T be a Steiner tree in H of cost |R| + c − 1.
We will show below that T can be transformed into a Steiner tree of the same
cost that uses edges of cost 1 only. If so, the latter tree must contain exactly c
Steiner vertices. Moreover, every required vertex of H must have a unit cost
edge to one of these Steiner vertices. Therefore, the corresponding c vertices
of G form a cover.

Let (u, v) be an edge of cost 2 in T . We may assume w.l.o.g. that u
and v are both required. (If u is Steiner, remove (u, v) from T , getting two
components. Throw in an edge from v to a required vertex to connect the
two sides, and get a Steiner tree of the same cost as T .) Let eu and ev be
the edges, in G, corresponding to these vertices. Since G is connected, there
is a path, p, from one of the endpoints of eu to one of the endpoints of ev

in G. Now, removing (u, v) from T gives two connected components. Let the
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set of required vertices in these two sets be R1 and R2. Clearly, u and v
lie in different sets, so path p must have two adjacent edges, say (a, b) and
(b, c) such that their corresponding vertices, say w and w�, lie in R1 and R2,
respectively. Let the Steiner vertex, in H, corresponding to b be sb. Now,
throwing in the edges (sb, w) and (sb, w

�) must connect the two components.
Observe that these two edges are of unit cost.

Now, if OPT(G) ≤ 2
3 |V |, then OPT(H) > |R|+ 2

3 |S|−1, and if OPT(G) >
(1+ εv) 2

3 |V |, then OPT(H) > |R|+(1+ εv) 2
3 |S|− 1. The theorem follows. ✷

The reduction is illustrated below. Graph G is an instance of the ver-
tex cover problem. The highlighted vertices form a cover. Graph H shows
the Steiner tree corresponding to this cover in the reduced graph. Required
vertices have been marked with squares, and the three Steiner vertices corre-
sponding to the cover have been marked with circles (the remaining Steiner
vertices have been omitted for clarity). The edge between two Steiner vertices
in the tree is dotted to distinguish it from the remaining edges, which connect
required and Steiner vertices.

✉

✉

✉

✉

✉

✉

✚
✚

✚
✚

✚✚








✚
✚

✚
✚

✚✚
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G H

29.6 Hardness of clique

The best approximation algorithms known for some problems, including
clique, are extremely weak – to the extent that the solution produced by
the best known algorithm is only very slightly better than picking a trivial
feasible solution. Recent hardness results have been invaluable in explaining
why this is so: these problems are inherently inapproximable (essentially). In
this section, we will establish this for clique:

Problem 29.15 (Clique) Given an undirected graph G = (V,E) with
nonnegative weights on vertices, find a clique of maximum weight. A clique
in G is a subset of vertices, S ⊆ V , such that for each pair u, v ∈ S, (u, v) ∈ E.
Its weight is the sum of weights of its vertices.

Consider the cardinality version of this problem, i.e., when all vertex
weights are unit. In this section we will show that there is a constant εq > 0,
such that there is no 1/(nεq ) factor approximation algorithm for this problem,
assuming P �= NP. Let us first prove the following weaker result.
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Lemma 29.16 For fixed constants b and q, there is a gap-introducing reduc-
tion from SAT to clique that transforms a Boolean formula φ of size n to a
graph G = (V, E), where |V | = 2qnb, such that

• if φ is satisfiable, OPT(G) ≥ nb, and
• if φ is not satisfiable, OPT(G) < 1

2nb.

Proof: Let F be a PCP(log n, 1) verifier for SAT that requires b log n ran-
dom bits and queries q bits of the proof. We will transform a SAT instance,
φ, of size n to a graph G = (V, E) as follows. For each choice of a binary
string, r, of b log n bits, and each truth assignment, τ , to q Boolean variables,
there is a vertex vr,τ in G. Thus, |V | = 2qnb.

Let Q(r) represent the q positions in the proof that F queries when it
is given string r as the “random” string. We will say that vertex vr,τ is
accepting if F accepts when it is given random string r and when it reads τ
in the Q(r) positions of the proof; it is rejecting otherwise. Vertices vr1,τ1 and
vr2,τ2 are consistent if τ1 and τ2 agree at each position at which Q(r1) and
Q(r2) overlap. Clearly, a necessary condition for consistency is that r1 �= r2.
Two distinct vertices vr1,τ1 and vr2,τ2 are connected by an edge in G iff they
are consistent and they are both accepting. Vertex vr,τ is consistent with
proof p if positions Q(r) of p contain τ .

If φ is satisfiable, there is a proof, p, on which F accepts for each choice,
r, of the random string. For each r, let p(r) be the truth setting assigned by
proof p to positions Q(r). Now, the vertices {vr,p(r) | |r| = b log n} form a
clique in G of size nb.

Next, suppose that φ is not satisfiable, and let C be a clique in G. Since
the vertices of C are pairwise consistent, there is a proof, p, that is consistent
with all vertices of C. Therefore, the probability of acceptance of F on proof
p is at least |C|/nb (notice that the vertices of C must correspond to distinct
random strings). Since the probability of acceptance of any proof is < 1/2
the largest clique in G must be of size < 1

2nb. ✷

As a consequence of Lemma 29.16, there is no factor 1/2 approximation
algorithm for clique assuming P �= NP. Observe that the hardness factor
established is precisely the bound on the error probability of the probabilisti-
cally checkable proof for SAT. By the usual method of simulating the verifier a
constant number of times, this can be made 1/k for any constant k, leading to
a similar hardness result for clique. In order to achieve the claimed hardness,
the error probability needs to be made inverse polynomial. This motivates
generalizing the definition of PCP as follows. Let us define two additional
parameters, c and s, called completeness and soundness, respectively. A lan-
guage L ∈ PCPc,s[r(n), q(n)] if there is a verifier V , which on input x of
length n, obtains a random string of length O(r(n)), queries O(q(n)) bits of
the proof, and satisfies:

• if x ∈ L, there is a proof y that makes V accept with probability ≥ c,
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• if x /∈ L, then for every proof y, V accepts with probability < s.

Thus, the previously defined class PCP[r(n), q(n)] = PCP1, 1
2
[r(n), q(n)]. In

general, c and s may be functions of n.
We would like to obtain a PCP characterization of NP which has inverse

polynomial soundness. An obvious way of reducing soundness is to simulate
a PCP[log n, 1] verifier multiple number of times and accept iff the verifier
accepts each time. Simulating k times will reduce soundness to 1/2k; how-
ever, this will increase the number of random bits needed to O(k log n) and
the number of query bits to O(k). Observe that the number of vertices in
the graph constructed in Lemma 29.16 is 2O(r(n)+q(n)). To achieve inverse
polynomial soundness, k needs to be Ω(log n). For this value of k, the num-
ber of bits queried is O(log n), which is not a problem. However, the number
of random bits needed is O(log2 n), which leads to a superpolynomial sized
graph.

The following clever idea overcomes this difficulty. We will use a constant
degree expander graph to generate O(log n) strings of b log n bits each, using
only O(log n) truly random bits. The verifier will be simulated using these
O(log n) strings as the “random” strings. Clearly, these are not truly random
strings. Properties of expanders help show that they are “almost random” –
the probability of error still drops exponentially in the number of times the
verifier is simulated.

Let H be a constant degree expander on nb vertices, each vertex having
a unique b log n bit label. A random walk on H of length O(log n) can be
constructed using only O(log n) bits, b log n bits to pick the starting vertex
at random and a constant number of bits to pick each successive vertex.
(Observe that the random walk is started in the stationary distribution, which
is uniform since the graph is regular.) The precise property of expanders we
will need is the following.

Theorem 29.17 Let S be any set of vertices of H of size < (nb)/2. There
is a constant k such that

Pr[ all vertices of a k log n length random walk lie in S ] <
1
n

.

For intuitive justification for Theorem 29.17, observe that a constant frac-
tion of the edges incident at vertices of S have their other end points in S –
these help the walk escape from S. The following figure shows a walk on H
that does not lie in S:
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 S

Theorem 29.18 NP = PCP1, 1
n
[log n, log n]

Proof: We will prove the difficult half,

PCP1, 1
2
[log n, 1] ⊆ PCP1, 1

n
[log n, log n],

and leave the rest as Exercise 29.5. Let L ∈ PCP1, 1
2
[log n, 1]. Let F be a

verifier for L which requires b log n random bits and queries q bits of the
proof, where b and q are constants.

Next, we give a PCP1, 1
n
[log n, log n] verifier for L, F �, which constructs

the expander graph H defined above. It then constructs a random walk of
length k log n on H, using O(log n) random bits. Both constructions can
be accomplished in polynomial time. The label of each vertex on this path
specifies a b log n bit string. It uses these k log n + 1 strings as the “random”
strings on which it simulates verifier F . F � accepts iff F accepts on all k log n+
1 runs.

Consider string x ∈ L, and let p be a proof that makes verifier F accept x
with probability 1. Clearly, F �, given proof p, also accepts x with probability
1. Hence the completeness of the new proof system is 1.

Next, consider string x /∈ L, and let p be an arbitrary proof supplied to F �.
When given proof p, verifier F accepts on < (nb)/2 random strings of length
b log n. Let S denote the corresponding set of vertices of H, |S| < (nb)/2. Now,
F � accepts x iff the random walk remains entirely in S. Since the probability
of this event is < 1/n, the soundness of F � is 1/n. Finally observe that F �

requires only O(log n) random bits and queries O(log n) bits of the proof. ✷
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Theorem 29.19 For fixed constants b and q, there is a gap-introducing re-
duction from SAT to clique that transforms a Boolean formula φ of size n to
a graph G = (V, E), where |V | = nb+q, such that

• if φ is satisfiable, OPT(G) ≥ nb, and
• if φ is not satisfiable, OPT(G) < nb−1.

Proof: Let F be a PCP1, 1
n
[log n, log n] verifier for SAT that requires b log n

random bits and queries q log n bits of the proof. The transformation of SAT
instance φ to graph G is exactly as in Lemma 29.16. The only difference
is that the increased number of bits queried results in a larger number of
vertices.

The correctness of the construction also along the lines of Lemma 29.16.
If φ is satisfiable, let p be a good proof, and pick the nb vertices of G that are
consistent with p, one for each choice of the random string. These vertices
will form a clique in G. Furthermore, any clique C in G gives rise to a proof
that is accepted by F with probability ≥ |C|/nb. Since the soundness of F is
1/n, if φ is not satisfiable, the largest clique in G is of size < nb−1. ✷

Corollary 29.20 There is no 1/(nεq ) factor approximation algorithm for
the cardinality clique problem, assuming P �= NP, where εq = 1/(b + q), for
constants b and q defined in Theorem 29.19.

29.7 Hardness of set cover

As stated in Chapter 2, the simple greedy algorithm for the set cover problem,
which is perhaps the first algorithmic idea one would attempt, has remained
essentially the best algorithm. Since set cover is perhaps the single most
important problem in the theory of approximation algorithms, a lot of effort
was expended on obtaining an improved algorithm.

In this section, we will present the remarkable result that the approxima-
tion factor of this algorithm is tight up to a constant multiplicative factor.
Improved hardness results show that it is tight up to lower order terms as
well (see Section 29.9). This should put to rest nagging doubts about the true
approximability of this central problem.

29.7.1 The two-prover one-round characterization of NP

Observe that for the purpose of showing hardness of MAX-3SAT and clique
(Theorems 29.7 and 29.19), we did not require a detailed description of the
kinds of queries made by the verifier – we only required a bound on the
number of queries made. In contrast, this time we do need a description,
and moreover, we want to first establish that a particularly simple verifier


