1. Consider the vectors $B=\left\{b_{1}=(1,1,1), b_{2}=(1,1,0), b_{3}=(2,2,1)\right\}$ in \mathbf{R}^{3}.
2. Show that these vectors are not linearly independent.
3. Find two linearly independent vectors v_{1} and v_{2} different from the vectors in B such that both v_{1} and v_{2} are in $\operatorname{span}(B)$.
4. Find two linearly independent vectors w_{1} and w_{2} such that both w_{1} and w_{2} are not in $\operatorname{span}(B)$.
5. Find a vector v such that $\left\{b_{1}, v\right\},\left\{b_{2}, v\right\}$ and $\left\{b_{3}, v\right\}$ are linearly independent sets, but $\left\{b_{1}, b_{2}, v\right\}$ is linearly dependent.
6. Is the vector $w=(1,1,2)$ in $\operatorname{span}(B)$? If so, find scalars (real numbers) α, β, γ such that $w=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\alpha_{3} b_{3}$. Otherwise, show that no such scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ exists.
7. Show that the vector $u=(3,3,2)$ can be written as $u=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\alpha_{3} b_{3}=\alpha_{1}^{\prime} b_{1}+\alpha_{2}^{\prime} b_{2}+$ $\alpha_{3}^{\prime} b_{3}$ such that $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \neq\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right)$.
8. Consider the vectors $B=\left\{b_{1}=(1,0,1), b_{2}=(1,1,0), b_{3}=(0,1,1)\right\}$ in \mathbf{R}^{3}.
9. Show that the vectors b_{1}, b_{2}, b_{3} are linearly independent.
10. Find scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that $v=(1,1,1)=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\alpha_{3} b_{3}$.
11. Show that for any vector $w=(x, y, z) \in \mathbf{R}^{3}$, we can find scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that $w=$ $\alpha_{1} b_{1}+\alpha_{2} b_{2}+\alpha_{3} b_{3}$. Express α_{1}, α_{2} and α_{3} in terms of x, y and z.
12. Suppose $v=(1,1,1)=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\alpha_{3} b_{3}=\alpha_{1}^{\prime} b_{1}+\alpha_{2}^{\prime} b_{2}+\alpha_{3}^{\prime} b_{3}$ then show that $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right)$.
13. Does B form a basis for \mathbf{R}^{3} ?
14. Suppose a vector $v \in \mathbf{R}^{3}$ has coordinates $(1,1,1)$ w.r.t the basis $(1,1,0),(1,0,1),(0,1,1)$, Find its coordinates with respect to the basis $(1,0,0),(1,1,0),(1,1,1)$.
15. Consider the set of all polynomials with real coefficients with degree at most 3. (This set is called $\left.\mathbf{R}_{3}[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}: a_{0}, a_{1}, a_{2}, a_{3} \in \mathbf{R}\right\}\right)$.
16. Show that $\mathbf{R}_{3}[x]$ is a vector space over \mathbf{R}.
17. Show that the polynomials $e_{1}(x)=1, e_{2}(x)=x, e_{3}(x)=x^{2}, e_{4}(x)=x^{3}$ is a basis for $\mathbf{R}_{3}[x]$. $\left(e_{1}(x), e_{2}(x), e_{3}(x), e_{4}(x)\right)$ is called the standard basis of $\mathbf{R}_{3}[x]$ (why!?).
18. Show that the polynomials $b_{1}(x)=1, b_{2}(x)=\frac{x}{1!}, b_{3}(x)=\frac{x^{2}}{2!}, b_{4}(x)=\frac{x^{3}}{3!}$ form a linearly independent set (and hence a basis) in $\mathbf{R}_{3}[x]$.
19. Find the coordinates of the polynomial $1+x+x^{2}+x^{3}$ with respect to the basis $\left(b_{1}(x), b_{2}(x), b_{3}(x), b_{4}(x)\right)$
20. Show that the polynomials $c_{1}(x)=1, c_{2}(x)=\frac{x-1}{1!}, c_{3}(x)=\frac{(x-1)^{2}}{2!}, c_{4}(x)=\frac{(x-1)^{3}}{3!}$ forms a linearly independent set (and hence a basis) in $\mathbf{R}_{3}[x]$.
21. Suppose a polynomial $p(x)$ has coordinates $(1,1,1,1)$ with respect to the basis $\left(b_{1}(x), b_{2}(x), b_{3}(x), b_{4}(x)\right)$, what will be its coordinates with respect to a) basis $\left(e_{1}(x), e_{2}(x), e_{3}(x), e_{4}(x)\right)$? b) basis $\left(c_{1}(x), c_{2}(x), c_{3}(x), c_{4}(x)\right)$?
22. Consider the vector space of all polynomials of degree at most n over \mathbf{R}. Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+$ $\cdots+a_{n-1} x^{n-1}$. Find the co-ordinates of $f(x)$ over the basis $\left[1,(x-t),(x-t)^{2}, \cdots,(x-t)^{n-1}\right]$. (Hint: Evaluate $\frac{d^{k}}{d x^{k}} f(x)$ at $x=t$.)
23. Consider the vector space of all polynomials over \mathbf{R} (called the set $\mathbf{R}[x]$). Let t be any real number. Show that the set $B=\left\{1, \frac{(x-t)}{1!}, \frac{(x-t)^{2}}{2!}, \frac{(x-t)^{3}}{3!}, \ldots\right\}$ is a collection of linearly independent vectors in $\mathbf{R}[x]$. Argue that $\operatorname{span}(B)=\mathbf{R}[x]$ and hence B is a basis of $\mathbf{R}[x]$. Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+$ $\cdots+a_{n-1} x^{n-1}$ be a polynomial in $\mathbf{R}[x]$. What will be cordinates of $f(x)$ with respect to the basis B ? The representation of $f(x)$ with respect to the basis B is called the Taylor expansion of $f(x)$ with respect to the point t.
