Problem Set II

1. Let V is a vector space over real numbers. Let ()$: V \times V \rightarrow \mathbf{R}$ be a function satisfying the inner product axioms - that is, for all $u, v, w \in V, a, b \in \mathbf{R}$, a) $(u, a v+b w)=a(u, v)+b(u, w)$, b) $(u, v)=(v, u)$, c) $(u, u) \geq 0$ and $(u, u)=0$ if and only if $u=0$. Define $\|u\|=\sqrt{(u, u)}$ and $d(u, v)=\|u-v\|$. For the following questions, assume that u, v and w are abitrary vectors.
2. Show that if $u, v \in V$ such that $(u, v)=0$ then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
3. Show that $|(u, v)| \leq\|u\|\|v\|$ (Cauchy Schwartz inequality).
4. Show that $d(u, v)+d(v, w) \geq d(u, w)$.
5. Let () be the standard dot product on \mathbf{R}^{3}. Find two mutually perpendicular unit vectors u_{1} and u_{2} that are also perpendicular to the vector $v=[1,1,1]^{T}$. (Don't start drawing pictures! translate the requirement to an algebraic condition involving () and solve).
6. Let () be the standard dot product on \mathbf{R}^{3}. Find a unit vector u perpendicular to both $v_{1}=[1,1,0]^{T}$ and $v_{2}=[0,1,1]^{T}$.
7. Let () be the standard dot product on \mathbf{R}^{2}. Let $b_{1}=[1,1]^{T}$ and $b_{2}=[1,-1]^{T}$. Suppose $v=$ $2 b_{1}+3 b_{2}$. Find the coordinates of a unit vector u with respect to the basis $\left[b_{1}, b_{2}\right]$ such that $(u, v)=0$.
8. Let () be the standard dot product on \mathbf{R}^{2}. Consider the basis, $b_{1}=[1,1]^{T}$ and $b_{2}=[1,0]^{T}$ of \mathbf{R}^{2}. Find the 2×2 matrix A such that if $v=x_{1} b_{1}+x_{2} b_{2}$ and $w=y_{1} b_{1}+y_{2} b_{2}$, then $(u, w)=\left[x_{1}, x_{2}\right] A\left[y_{1}, y_{2}\right]^{T}$. Solve the same question with $b_{1}=\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{T}$ and $b_{2}=\left[\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right]^{T}$
9. Consider the vector $v=(1,1,1,1)$ in \mathbf{R}^{4}. Let $u=(1,1,0,0)$. Find a vector w perpendicular to u such that $v-w$ is a vector along the direction of u.
10. Let A be any $n \times n$ real matrix. Show that $x^{T} A^{T} A x \geq 0$ for any vector $x \in \mathbf{R}^{n}$. Further show that if A is non singular, then A is a symmetric positive definite matrix.
11. Let B be any non singular $n \times n$ real matrix. Let $A=B^{T} B$. For any vectors $x, y \in \mathbf{R}^{n}$, define $(x, y)=x^{T} A y$. Show that the function () so defined satisfies all the inner product axioms.
12. Define the inner product () function on \mathbf{R}^{2} as follows: Given vectors $u=\left[x_{1}, x_{2}\right]^{T}$ and $v=\left[y_{1}, y_{2}\right]^{T}$ in \mathbf{R}^{2}, define $(u, v)=\left[x_{1}, x_{2}\right]\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$. Find a basis b_{1}, b_{2} of \mathbf{R}^{2} such that for any vectors $u=x_{1} b_{1}+x_{2} b_{2}$ and $v=y_{1} b_{1}+y_{2} b_{2}$, then $(u, v)=x_{1} y_{1}+x_{2} y_{2}$. (Basically, the question asks you to find a basis b_{1}, b_{2} of \mathbf{R}^{2} with respect to which () behaves just like the standard dot product).
13. Find a non-singular 2×2 real matrix B such that $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]=B^{T} B$. (Can you see the connection to the previous question!?)
