Problem Set II

- 1. Let V is a vector space over real numbers. Let (): $V \times V \to \mathbf{R}$ be a function satisfying the inner product axioms that is, for all $u, v, w \in V$, $a, b \in \mathbf{R}$, a) (u, av + bw) = a(u, v) + b(u, w), b) (u, v) = (v, u), c) $(u, u) \ge 0$ and (u, u) = 0 if and only if u = 0. Define $||u|| = \sqrt{(u, u)}$ and d(u, v) = ||u v||. For the following questions, assume that u, v and w are abitrary vectors.
 - 1. Show that if $u, v \in V$ such that (u, v) = 0 then $||u + v||^2 = ||u||^2 + ||v||^2$.
 - 2. Show that $|(u, v)| \leq ||u|| ||v||$ (Cauchy Schwartz inequality).
 - 3. Show that $d(u, v) + d(v, w) \ge d(u, w)$.
- 2. Let () be the standard dot product on \mathbf{R}^3 . Find two mutually perpendicular unit vectors u_1 and u_2 that are also perpendicular to the vector $v = [1, 1, 1]^T$. (Don't start drawing pictures! translate the requirement to an algebraic condition involving () and solve).
- 3. Let () be the standard dot product on \mathbf{R}^3 . Find a unit vector u perpendicular to both $v_1 = [1, 1, 0]^T$ and $v_2 = [0, 1, 1]^T$.
- 4. Let () be the standard dot product on \mathbf{R}^2 . Let $b_1 = [1, 1]^T$ and $b_2 = [1, -1]^T$. Suppose $v = 2b_1 + 3b_2$. Find the coordinates of a unit vector u with respect to the basis $[b_1, b_2]$ such that (u, v) = 0.
- 5. Let () be the standard dot product on \mathbf{R}^2 . Consider the basis, $b_1 = [1, 1]^T$ and $b_2 = [1, 0]^T$ of \mathbf{R}^2 . Find the 2 × 2 matrix A such that if $v = x_1b_1 + x_2b_2$ and $w = y_1b_1 + y_2b_2$, then $(u, w) = [x_1, x_2]A[y_1, y_2]^T$. Solve the same question with $b_1 = [\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]^T$ and $b_2 = [\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}]^T$
- 6. Consider the vector v = (1, 1, 1, 1) in \mathbb{R}^4 . Let u = (1, 1, 0, 0). Find a vector w perpendicular to u such that v w is a vector along the direction of u.
- 7. Let A be any $n \times n$ real matrix. Show that $x^T A^T A x \ge 0$ for any vector $x \in \mathbf{R}^n$. Further show that if A is non singular, then A is a symmetric positive definite matrix.
- 8. Let B be any non singular $n \times n$ real matrix. Let $A = B^T B$. For any vectors $x, y \in \mathbf{R}^n$, define $(x, y) = x^T A y$. Show that the function () so defined satisfies all the inner product axioms.
- 9. Define the inner product () function on \mathbf{R}^2 as follows: Given vectors $u = [x_1, x_2]^T$ and $v = [y_1, y_2]^T$ in \mathbf{R}^2 , define $(u, v) = [x_1, x_2] \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Find a basis b_1, b_2 of \mathbf{R}^2 such that for any vectors $u = x_1b_1 + x_2b_2$ and $v = y_1b_1 + y_2b_2$, then $(u, v) = x_1y_1 + x_2y_2$. (Basically, the question asks you to find a basis b_1, b_2 of \mathbf{R}^2 with respect to which () behaves just like the standard dot product).
- 10. Find a non-singular 2×2 real matrix B such that $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = B^T B$. (Can you see the connection to the previous question!?)