
Problem Set III

1. Let V be an inner product space of dimension n with inner product function (). Let S be a subspace

of V of dimension k for some 0 < k < n. Define S⊥ = {u ∈ V : (u, s) = 0 for all s ∈ S}. S⊥

is called the orthogonal complement of the subspace S (with respect to the inner product ()).
(The more common name for S⊥, “perpendicular space of S” is used mostly when the vector space V
is Rn and the inner product under consideration is the standard inner product.)

1. Show that S⊥ is a subspace of V .

2. Show that if v ∈ V satisfies v ∈ S ∩ S⊥ then v = 0. (Thus 0 vector is the only vector in the

intersection of S and S⊥.)

3. Suppose s, s′ ∈ S and w,w′ ∈ S⊥. Suppose s + w = s′ + w′ then show that s = s′ and
w = w′. This shows that if any vector v ∈ V can be written as the sum of two vectors - one in
the subspace S and one perpendicular to S, then there is only one way to do so.

4. Suppose v = s+w for some s ∈ S and w ∈ S⊥. Show that ||v||2 = ||s||2+||w||2. (Pythagoras
theorem).

2. Let V be an inner product space of dimension n with inner product function (). Let S be a subspace of
V of dimension k for some 0 < k < n as in the previous question. Let b1, b2, . . . bk be an orthonormal
basis for S. Let v ∈ V . Let αi = (v, bi).

1. Show that w = v −
∑k

i=1 αibi ∈ S⊥.

2. Show that we can write every vector v ∈ V as v = s+ w for some unique s ∈ S and w ∈ S⊥.
(The vector s ∈ S is called the orthogonal projection of v on to S and w is called the
component of v orthogonal (perpendicular to) to S. These two questions essentially work out the
theory of how to resolve a vector v ∈ V into components along and perpendicular to S.

3. Show that dim(S⊥) = n − k. (Hint: Assume dim(S⊥) = m and consider any orthonormal

basis c1, c2, . . . cm of S⊥. Prove that b1, b2, . . . bk, c1, c2, . . . cm is a basis of V .)

3. This, and the next questions puts the theory of orthogonal projections developed in the last two questions

into practical problem solving. Consider the subspace S of R3 spanned by the vectors [1, 1, 1]T and

[1, 1, 0]T . Assume the standard inner product. Resolve the vectors v1 = [0, 0, 1]T and v2 = [1, 1, 2]T

into components along S and perpendicular to S. Find the coordinates (with respect to the standard

basis in terms of x, y and z) of the components of the generic vector v = [x, y, z]T in R3 along and
orthogonal to S.

4. Define the inner product () function on R2 as follows: Given vectors u = [x1, x2]
T and v = [y1, y2]

T

in R2, define (u, v) = [x1, x2]

[
2 1
1 1

] [
y1
y2

]
. Consider the vector e1 = [1, 0]T . Let S be the subspace

of R2 spanned by e1 (essentially the x-axis). Find the components of the vector [2, 1]T along S and
orthogonal to S. (Hint: In component resolution problems of the kind presented in this question as
well as the previous question, first find an orthonormal basis for S (w.r.t. the inner product under
consideration) and the first two questions show that this makes component resolution easy.)

5. Let V be an inner product space of dimension n with inner product function (). Let S be a subspace
of V of dimension k for some 0 < k < n. Let v ∈ V be any vector. Let s and w be the components
of v along and orthogonal to S. Let s′ ∈ S. Show that d(v, s′) ≥ d(v, s). (Hint: d2(v, s′) =
||v − s+ s− s′||2 - why?) This result shows that the component of v along s is the nearest (point of
shortest distance) from v in the subspace S, and is called the approximation theorem.

Approximation theorem explains why orthogonal projections are used for dimensionality reduction (pro-
jecting a data vector of real numbers with lots of components into a lower dimensional space of fewer
components to reduce the sample size of the data set so that computation becomes manageable) in the
field of big data analysis. Orthogonal projection gives the nearest (with respect to Euclidean distance)



approximation of the given data vector in the lower dimensional subspace. The following questions
develop some matrix based calculation techniques that makes problem solving easy. First we introduce
some notation.

Let V be a real inner product space with inner product function (). A subspace S of dimension 1 in V
is sometimes called a direction. To specify a direction in V , sometimes a unit vector d ∈ S satisfying
span(d) = S is specified (with the convention that the direction intended is span(d)). In this case d
is called a unit direction. Let v be an arbitrary vector in V . The projection of v along the subspace
S = Span(d) is called the projection of v along the direction d.

6. In R3 (with standard inner product), consider the unit direction vector d = [
√
3
2
, 1
2
, 0]. The 3 × 3

matrix P is defined by Pd = ddT . Let v = [x, y, z]T . Show that the vector Pd[x, y, z]
T is the

orthogonal projection v along the subspace . This shows that computation of the projection along the
direction d can be transformed into matrix multiplication. The following question shows that projection
into higher dimensional subspaces can also be transformed into matrix multiplication.

7. In R3 (with standard inner product), consider the mutually perpendicular direction vectors c =

[
√
3
2
, 1
2
, 0] and d = [−1

2
,
√
3
2
, 0]. Let Pc = ccT and Pd = ddT . Let S = span(c, d) be the

two dimensional subspace of R3 spanned by c and d.

1. Find the orthogonal projection of the vector [3, 1, 1] along the subspace S.

2. Show that the orthogonal projection of the vector [x, y, z] ∈ R3 into S is given by

(Pd + Pc)[x, y, z]
T .

The next question generalizes the matrix based computational technique seen in these problems. (The
question looks complicated, but it is just a general statement for the computation done in the last two
questions).

8. Let V be an inner product space of dimension n with inner product function (). Let b1, b2, . . . bn be
an orthonormal basis of V . Let d be a unit direction vector such that d = α1b1+α2b2+ · · ·+αnbn.
Let S = span(d). Define the matrix Pd = [α1, α2, . . . , αn]

T [α1, α2, . . . , αn]. Let v be any vector
in V such that v = x1b1 + x2b2 + · · · + xnbn. Let s be the orthogonal projection of v onto the
subspace S. Let [y1, y2, . . . yn]

T be the coordinate vector s with respect to the basis [b1, b2, . . . bn].
(i.e., s = y1b1 + y2b2 + · · · + ynbn). Show that [y1, y2, . . . yn]

T = Pd[x1, x2, . . . , xn]
T . (Pd is

called the projection matrix for the direction d with respect to the basis [b1, b2, . . . , bn].)

Suppose d′ = α′
1b1 + α′

2b2 + · · · + α′
nbn an another unit vector orthogonal to d, Let P ′

d =
[α′

1, α
′
2, . . . , α

′
n]

T [α′
1, α

′
2, . . . , α

′
n]. Let S ′ = span(d, d′). Show that (Pd + P ′

d)[x1, x2, . . . , xn]
T

gives the projection of v onto the subspace S ′.

9. Using Gram Schmidt orthogonalization, find a 2 × 2 upper triangular matrix U such that

[
2 1
1 1

]
=

UTU .
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