Problem Set IV

- 1. Let V and W be vector spaces of dimension m and n respectively. Let $c_1, c_2, \ldots c_m$ and $b_1, b_2, \ldots b_n$ be basis of V and W. Let T be a linear transformation from V to W. Let A be the matrix of T w.r.t. basis $c_1, c_2, \ldots c_m$ (of V) and $b_1, b_2, \ldots b_n$ (of W). Prove the following: (Note: In an *if and only if* statement, there are two directions to be established!)
 - 1. T is injective if and only if $T(c_1), T(c_2), \ldots T(c_m)$ is a basis of Image(T). (Thus, an injective linear map is an isomorphism between V and Image(T)).
 - 2. T is bijective if and only if T is both injective and m = n.
 - 3. T is injective if and only if CRank(A) = m. In particular, if n < m, T cannot be injective.
 - 4. T is surjective if and only if $Columnspan(A) = \mathbf{R}^n$.
 - 5. T is bijective if and only if m = n and A is a non-singular matrix.
- 2. Let e_1, e_2, \ldots represent the standard basis vectors (in \mathbb{R}^n). Consider the map $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(e_1) = e_2$, $T(e_2) = e_1$ and $T(e_3) = e_1 + e_2$. Let $c_1 = [0, 0, 1]^T$, $c_2 = [0, 1, 1]^T$, $c_3 = [1, 1, 1]^T$ and $b_1 = [1, 1]^T$, $b_2 = [1, -1]^T$. Find the matrix of T with respect to basis c_1, c_2, c_3 and b_1, b_2 . (Hint: In such problems, it often less cumbersome to find the expressions for $T(c_1), T(c_2)$ and $T(c_3)$ in terms of b_1 and b_2 and directly compute the matrix required, instead of using matrix formula $A' = BAC^{-1}$. However, the matrix formula is better suited for programming)
- 3. Let V be a vector space of dimension n. Let b_1, b_2, \ldots, b_n be a basis of V. Let T be an operator on V. Let A be the matrix of T with respect to the basis b_1, b_2, \ldots, b_n . Prove the following:
 - 1. T is bijective if and only if T is injective if and only if T is surjective. (Thus, proving either injectivity or surjectivity proves bijectivity for operators).
 - 2. T is bijective if and only if columns of A are linearly independent (and hence the volume of the parallelepiped generated by the columns, $det(A) \neq 0$).
 - 3. T is bijective if and only if 0 is not an Eigen value of A.
- 4. Consider the operator $T : \mathbf{R}^2 \to \mathbf{R}^2$ whose matrix with respect to the standard basis e_1, e_2 is given by $A = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix}$. (I will simply write "consider the matrix $A = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix}$ " instead of the above politically correct sentence in future!) What is the matrix of A with respect to the basis of $b_1 = [1, 1]^T$, $b_2 = [1, -1]^T$.
- 5. Suppose $T: V \mapsto V$ be a linear operator on the *n* dimensional vector space *V*. Suppose $b_1, b_2, \ldots b_n$ be a basis of *V* such that $T(b_1) = \lambda_1 b_1, T(b_2) = \lambda_2 b_2, \ldots T(b_n) = \lambda_n b_n$, where λ_i is a scalar in **R** for $1 \leq i \leq n$. What will be the matrix of *T* with respect to the basis b_1, b_2, \ldots, b_n ? [A basis of *V* with respect to which the matrix of a linear operator *T* becomes a diagonal matrix is called a

diagonalizing basis for V.] Find a diagonalizing basis for the matrix $A = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix}$.

- 6. Consider the orthonormal basis $b_1 = \left[\frac{\sqrt{3}}{2}, \frac{1}{2}\right]^T$, $\left[\frac{1}{2}, -\frac{\sqrt{3}}{2}\right]^T$ of \mathbf{R}^2 . Let P_1 be the orthogonal projection matrix to b_1 and let P_2 be the projection matrix to b_2 . Consider the matrix $A = 2P_1 + 3P_2$. Find a diagonalizing basis for A. Let T be the operator whose matrix is A with respect to the standard basis of \mathbf{R}^2 . Find the matrix of T with respect to the diagonalizing basis you have found out for A. (Again, we will in future write "find the matrix of A with respect to the diagonalizing basis" instead of "find the matrix of the operator T, whose matrix with respect to the standard basis is A, with respect to a basis that diagonalizes T").
- 7. Let $b_1, b_2, \ldots b_n$ be an orthonormal basis of \mathbf{R}^n . Consider the matrix $A = \lambda_1 b_1 b_1^T + \lambda_2 b_2 b_2^T + \cdots + \lambda_n b_n b_n^T$, where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are scalars in \mathbf{R} . Find a diagonalizing basis for A (you may express the basis vectors as linear combination of b_1, b_2, \ldots, b_n .) What is the matrix of A with respect to this basis?