Problem Set IV

1. Let V and W be vector spaces of dimension m and n respectively. Let $c_{1}, c_{2}, \ldots c_{m}$ and $b_{1}, b_{2}, \ldots b_{n}$ be basis of V and W. Let T be a linear transformation from V to W. Let A be the matrix of T w.r.t. basis $c_{1}, c_{2}, \ldots c_{m}$ (of V) and $b_{1}, b_{2}, \ldots b_{n}$ (of W). Prove the following: (Note: In an if and only if statement, there are two directions to be established!)
2. T is injective if and only if $T\left(c_{1}\right), T\left(c_{2}\right), \ldots T\left(c_{m}\right)$ is a basis of $\operatorname{Image}(T)$. (Thus, an injective linear map is an isomorphism between V and $\operatorname{Image}(T))$.
3. T is bijective if and only if T is both injective and $m=n$.
4. T is injective if and only if $C \operatorname{Rank}(A)=m$. In particular, if $n<m, T$ cannot be injective.
5. T is surjective if and only if $C o l u m n \operatorname{span}(A)=\mathbf{R}^{n}$.
6. T is bijective if and only if $m=n$ and A is a non-singular matrix.
7. Let e_{1}, e_{2}, \ldots represent the standard basis vectors (in \mathbf{R}^{n}). Consider the map $T: \mathbf{R}^{3} \mapsto \mathbf{R}^{2}$ defined by $T\left(e_{1}\right)=e_{2}, T\left(e_{2}\right)=e_{1}$ and $T\left(e_{3}\right)=e_{1}+e_{2}$. Let $c_{1}=[0,0,1]^{T}, c_{2}=[0,1,1]^{T}$, $c_{3}=[1,1,1]^{T}$ and $b_{1}=[1,1]^{T}, b_{2}=[1,-1]^{T}$. Find the matrix of T with respect to basis c_{1}, c_{2}, c_{3} and b_{1}, b_{2}. (Hint: In such problems, it often less cumbersome to find the expressions for $T\left(c_{1}\right), T\left(c_{2}\right)$ and $T\left(c_{3}\right)$ in terms of b_{1} and b_{2} and directly compute the matrix required, instead of using matrix formula $A^{\prime}=B A C^{-1}$. However, the matrix formula is better suited for programming)
8. Let V be a vector space of dimension n. Let $b_{1}, b_{2}, \ldots b_{n}$ be a basis of V. Let T be an operator on V. Let A be the matrix of T with respect to the basis $b_{1}, b_{2}, \ldots b_{n}$. Prove the following:
9. T is bijective if and only if T is injective if and only if T is surjective. (Thus, proving either injectivity or surjectivity proves bijectivity for operators).
10. T is bijective if and only if columns of A are linearly independent (and hence the volume of the parallelepiped generated by the columns, $\operatorname{det}(A) \neq 0)$.
11. T is bijective if and only if 0 is not an Eigen value of A.
12. Consider the operator $T: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$ whose matrix with respect to the standard basis e_{1}, e_{2} is given by $A=\left[\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right]$. (I will simply write "consider the matrix $A=\left[\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right]$ " instead of the above politically correct sentence in future!) What is the matrix of A with respect to the basis of $b_{1}=[1,1]^{T}$, $b_{2}=[1,-1]^{T}$.
13. Suppose $T: V \mapsto V$ be a linear operator on the n dimensional vector space V. Suppose $b_{1}, b_{2}, \ldots b_{n}$ be a basis of V such that $T\left(b_{1}\right)=\lambda_{1} b_{1}, T\left(b_{2}\right)=\lambda_{2} b_{2}, \ldots T\left(b_{n}\right)=\lambda_{n} b_{n}$, where λ_{i} is a scalar in \mathbf{R} for $1 \leq i \leq n$. What will be the matrix of T with respect to the basis $b_{1}, b_{2}, \ldots, b_{n}$? [A basis of V with respect to which the matrix of a linear operator T becomes a diagonal matrix is called a diagonalizing basis for V.] Find a diagonalizing basis for the matrix $A=\left[\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right]$.
14. Consider the orthonormal basis $b_{1}=\left[\frac{\sqrt{3}}{2}, \frac{1}{2}\right]^{T},\left[\frac{1}{2},-\frac{\sqrt{3}}{2}\right]^{T}$ of \mathbf{R}^{2}. Let P_{1} be the orthogonal projection matrix to b_{1} and let P_{2} be the projection matrix to b_{2}. Consider the matrix $A=2 P_{1}+3 P_{2}$. Find a diagonalizing basis for A. Let T be the operator whose matrix is A with respect to the standard basis of \mathbf{R}^{2}. Find the matrix of T with respect to the diagonalizing basis you have found out for A. (Again, we will in future write "find the matrix of A with respect to the diagonalizing basis" instead of "find the matrix of the operator T, whose matrix with respect to the standard basis is A, with respect to a basis that diagonalizes T ").
15. Let $b_{1}, b_{2}, \ldots b_{n}$ be an orthonormal basis of \mathbf{R}^{n}. Consider the matrix $A=\lambda_{1} b_{1} b_{1}^{T}+\lambda_{2} b_{2} b_{2}^{T}+\cdots+$ $\lambda_{n} b_{n} b_{n}^{T}$, where $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are scalars in \mathbf{R}. Find a diagonalizing basis for A (you may express the basis vectors as linear combination of $b_{1}, b_{2}, \ldots b_{n}$.) What is the matrix of A with respect to this basis?
