1. If A is a real symmetric $n \times n$ matrix such that det(A) = 0, then, show that the function f: $\mathbf{R}^n \times \mathbf{R}^n \mapsto \mathbf{R}$ defined by $f(u, v) = u^T A v$ does not define an inner product. Which inner product axiom is violated in this case?

- 2. Let B be an $n \times n$ real orthogonal matrix (that is, a matrix that satisfies $B^T B = I$). Show that the columns of B are mutually perpendicular unit vectors with respect to the standard inner product of \mathbf{R}^n .
- 3. In \mathbb{R}^2 consider the positive matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
 - 1. Find the Eigen values A. Find an orthonormal basis for the Eigen space of each Eigen value of A.
 - 2. Find an orthogonal 2×2 matrix B of \mathbf{R}^2 such that $A = BDB^T$ where D is a diagonal matrix. (Writing a symmetric matrix in this way is called the spectral decomposition of A or the spectral factorization of A).
- 4. Let V be a real inner product space with inner product (). Let b be a unit vector. Define the projection (operator) along the direction b, P_b by $P_b(v) = (v, b)b$ for all $v \in V$. Find $Rank(P_b)$ and $Nullity(P_b)$. Suppose $b_1, b_2, \ldots b_n$ is an orthonormal basis of V and $b = \alpha_1 b_1 + \alpha_2 b_2 + \cdots + \alpha_n b_n$. What will be the matrix of P_b with respect to the basis $b_1, b_2, \ldots b_n$?
- 5. Let V be a real inner product space with inner product (). Suppose S is a subspace of dimension k. Let b_1, b_2, \ldots, b_k be an orthonormal basis of S. Show that $P_S = P_{b_1} + P_{b_2} + \cdots + P_{b_k}$. That is, for all $v \in V$, $P_S(v) = (P_{b_1} + P_{b_2} + \cdots + P_{b_k})(v)$. Find $Rank(P_b)$ and $Nullity(P_b)$. This shows that projection into a subspace can be thought of as a (vector) sum of projections on to a collection of orthogonal directions.
- 6. [Bessel's inequality] Let $b_1, b_2, \ldots b_k$ be orthogonal unit vectors in an n dimensional complex inner product space V with inner product function (). Let $v \in V$. Show that $||v||^2 \ge \sum_{i=1}^k P_{b_i}(v)^2$ where $P_i(v) = (v, b_i)b_i$ is the projection of v along the direction b_i .
- 7. Let V be a real inner product space with inner product (). Suppose S is a subspace of dimension k. Let P_S be the projection function to the subspace S. Show that a) P_S satisfies $P_S^2 = P_S$ and b) P_S is symmetric - that is, for all $u, v \in V$, (Pu, v) = (u, Pv).
- 8. Let V be a real inner product space with inner product (). Suppose P is a linear operator on V. Suppose P satisfies a) $P^2 = P$ and b) P is symmetric. In this question, we will show that P is an orthogonal projection. Let S = Image(P).
 - 1. Show that if $s \in S$, P(s) = s. (Hint: You must use the fact that there exists some $v \in V$ such that P(v) = s).
 - 2. Show that P(s) = s if and only if $s \in Image(P)$. (Thus, S = Image(P) is precisely the Eigen space corresponding to Eigen value 1.)
 - 3. Prove that if $t \in S^{\perp}$ then $P(t) \in S^{\perp}$. Thus S^{\perp} is P invariant. (This requires only use of the fact that P is symmetric. You do not need the property $P^2 = P$ for proving this).
 - 4. Show that if $t \in S^{\perp}$, P(t) = 0. (Hint: Don't forget the fact that $P(t) \in S$ by the definition of S).
 - 5. Show that P(t) = 0 if and only if $t \in S^{\perp}$. Thus, S^{\perp} is the Eigen space corresponding to Eigen value 0.
 - 6. Show that 0 and 1 are the only Eigen values of P.