Problem Set V

1. If A is a real symmetric $n \times n$ matrix such that $\operatorname{det}(A)=0$, then, show that the function f : $\mathbf{R}^{n} \times \mathbf{R}^{n} \mapsto \mathbf{R}$ defined by $f(u, v)=u^{T} A v$ does not define an inner product. Which inner product axiom is violated in this case?
2. Let B be an $n \times n$ real orthogonal matrix (that is, a matrix that satisfies $B^{T} B=I$). Show that the columns of B are mutually perpendicular unit vectors with respect to the standard inner product of \mathbf{R}^{n}.
3. In R^{2} consider the positive matrix $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
4. Find the Eigen values A. Find an orthonormal basis for the Eigen space of each Eigen value of A.
5. Find an orthogonal 2×2 matrix B of \mathbf{R}^{2} such that $A=B D B^{T}$ where D is a diagonal matrix. (Writing a symmetric matrix in this way is called the spectral decomposition of A or the spectral factorization of A).
6. Let V be a real inner product space with inner product (). Let b be a unit vector. Define the projection (operator) along the direction b, P_{b} by $P_{b}(v)=(v, b) b$ for all $v \in V$. Find $\operatorname{Rank}\left(P_{b}\right)$ and $\operatorname{Nullity}\left(P_{b}\right)$. Suppose $b_{1}, b_{2}, \ldots b_{n}$ is an orthonormal basis of V and $b=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\cdots \alpha_{n} b_{n}$. What will be the matrix of P_{b} with respect to the basis $b_{1}, b_{2}, \ldots b_{n}$?
7. Let V be a real inner product space with inner product (). Suppose S is a subspace of dimension k. Let $b_{1}, b_{2}, \ldots, b_{k}$ be an orthonormal basis of S. Show that $P_{S}=P_{b_{1}}+P_{b_{2}}+\cdots+P_{b_{k}}$. That is, for all $v \in V, P_{S}(v)=\left(P_{b_{1}}+P_{b_{2}}+\cdots+P_{b_{k}}\right)(v)$. Find $\operatorname{Rank}\left(P_{b}\right)$ and Nullity $\left(P_{b}\right)$. This shows that projection into a subspace can be thought of as a (vector) sum of projections on to a collection of orthogonal directions.
8. [Bessel's inequality] Let $b_{1}, b_{2}, \ldots b_{k}$ be orthogonal unit vectors in an n dimensional complex inner product space V with inner product function (). Let $v \in V$. Show that $\|v\|^{2} \geq \sum_{i=1}^{k} P_{b_{i}}(v)^{2}$ where $P_{i}(v)=\left(v, b_{i}\right) b_{i}$ is the projection of v along the direction b_{i}.
9. Let V be a real inner product space with inner product (). Suppose S is a subspace of dimension k. Let P_{S} be the projection function to the subspace S. Show that a) P_{S} satisfies $P_{S}^{2}=P_{S}$ and b) P_{S} is symmetric - that is, for all $u, v \in V,(P u, v)=(u, P v)$.
10. Let V be a real inner product space with inner product (). Suppose P is a linear operator on V. Suppose P satisfies a) $P^{2}=P$ and b) P is symmetric. In this question, we will show that P is an orthogonal projection. Let $S=\operatorname{Image}(P)$.
11. Show that if $s \in S, P(s)=s$. (Hint: You must use the fact that there exists some $v \in V$ such that $P(v)=s)$.
12. Show that $P(s)=s$ if and only if $s \in \operatorname{Image}(P)$. (Thus, $S=\operatorname{Image}(P)$ is precisely the Eigen space corresponding to Eigen value 1.)
13. Prove that if $t \in S^{\perp}$ then $P(t) \in S^{\perp}$. Thus S^{\perp} is P invariant. (This requires only use of the fact that P is symmetric. You do not need the property $P^{2}=P$ for proving this).
14. Show that if $t \in S^{\perp}, P(t)=0$. (Hint: Don't forget the fact that $P(t) \in S$ by the definition of $S)$.
15. Show that $P(t)=0$ if and only if $t \in S^{\perp}$. Thus, S^{\perp} is the Eigen space corresponding to Eigen value 0 .
16. Show that 0 and 1 are the only Eigen values of P.
