## CS 6101 MFCS Test-I, Aug. 2018

1. Let $A$ be an $n \times n$ real matrix satisfying $x^{T} A x>0$ for all $0 \neq x \in \mathbf{R}^{n}$ (i.e., $A$ is positive definite). Show that $A$ is non-singular.

Soln: It is sufficient prove that the columns of $A$ are linearly independent and for that it is sufficient to prove that whenever $A x=0$ for any $x \in \mathbf{R}^{n}$ then $x=0$ (why?). Suppose $A x=0$ then, $x^{T} A x=0$. By positive definiteness of $A$, this implies $x=0$, proved.
2. Consider $\mathbf{R}^{2}$ with the standard inner product (). Let $u=[1,1]^{T}$ and $v=[1,0]^{T}$. Find a scalar value $\alpha$ such that $w=v-\alpha u$ satisfies $(u, w)=0$.

Soln: First normalize $u$ to a unit vector. This gives $u^{\prime}=\frac{1}{\sqrt{2}}[1,1]^{T}$. Now find $v-\left(v, u^{\prime}\right) u^{\prime}=$ $v-\frac{\left(v, u^{\prime}\right)}{\|u\|} u$ to get a vector perpendicular to $v$. Thus $\alpha=\frac{\left(v, u^{\prime}\right)}{\|u\|}=\frac{\left(v, \frac{u}{\|u\|)}\right.}{\|u\|}=\frac{(v, u)}{\|u\|^{2}}=\frac{(v, u)}{(u, u)}$. Calculations yield $\alpha=\frac{1}{2}$.
3. Let () be an inner product on the vector space $V$. For any two vectors $u, v \in V$, we say $u, v$ are orthogonal (with respect to the inner product ()) if $(u, v)=0$. Let $b_{1}, b_{2}$ be arbitrary non zero vectors in $V$. Find a scalar $\alpha$ such that $b_{2}-\alpha b_{1}$ is orthogonal to $b_{1}$.

Soln: This is just the generalization of the previous question. We have $\alpha=\left(b_{2}, \frac{b_{1}}{\left\|b_{1}\right\|}\right) \frac{b_{1}}{\left\|b_{1}\right\|}=\frac{\left(b_{2}, b_{1}\right)}{\left(b_{1}, b_{1}\right)}$. It is easy to verify that for this value of $\alpha,\left(b_{1}, b_{2}-\alpha b_{1}\right)=0$.
4. Let () be an inner product on the vector space $V$. Let $u, v \in V$ be non zero vectors satisfying $(u, v)=0$. Show that $u, v$ are linearly independent.

Soln: Suppose $\alpha u+\beta v=0$. We have to prove that $\alpha=\beta=0$. Now $\alpha u+\beta v=0 \Longrightarrow$ $(u, \alpha u+\beta v)=0 \Longrightarrow \alpha(u, u)+\beta(u, v)=0$. Now $(u, v)=0$ because $u, v$ are orthogonal. Hence $\alpha(u, u)=0$. Since $u \neq 0$, we have $(u, u)>0$ and hence $\alpha=0$. Similarly $\beta=0$.
5. Consider the vector space of polynomials of degree at most 4 with real coefficients. Consider the basis $1,(x-2),(x-2)^{2},(x-2)^{3},(x-2)^{4}$ of this vector space. Find the coordinates of the polynomial $p(x)=1+x+x^{2}+x^{3}+x^{4}$ with respect to this basis.

Soln: Let $p(x)=a_{0}+a_{1}(x-2)+a_{2}(x-2)^{2}+a_{3}(x-3)^{3}+a_{4}(x-4)^{4}$. Setting $x=2$ we get $a_{0}=p(2)=31$. Differentiating, we get $\left.p^{\prime}(x)\right|_{x=2}=49=a_{1}$. One more differentiation step yields $\left.p^{\prime \prime}(x)\right|_{x=2}=62=2 a_{2}$. Thus $a_{2}=31$. Differentiating again, we get $\left.p^{\prime \prime \prime}(x)\right|_{x=2}=54=6 a_{3}$. This gives $a_{3}=9$. Yet another differentiation yields $\left.p^{\prime \prime \prime \prime}(x)\right|_{x=2}=24=24 a_{4}$ yielding $a_{4}=1$.
6. For all $u, v \in \mathbf{R}^{2}$, define $(u, v)=u^{T} A v$ where $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. Is $(u, v)$ an inner product on $\mathbf{R}^{2}$ ?

Soln: The only non-trivial property to check is positivity. That is, to show that for all $[x, y] A[x, y]^{T}>$ 0 whenever $x, y$ are non-zero real numbers. But $[x, y] A[x, y]^{T}=2 x^{2}+y^{2}>0$ if $x \neq 0 \neq y$.

