MFCS September 2018

1. Find the inverse of the matrix $H=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$. No credits for solving brute force! There is a simple way to solve, which you must explain.
Soln: The columns of the matrix are orthogonal vectors of Euclidean norm (length) 2 each. Thus $\frac{1}{2} H$ is orthogonal. Consequently $\left(\frac{1}{2} H\right)^{-1}=\left(\frac{1}{2} H\right)^{T}$. But as H is symmetric, $H^{T}=H$. Hence we have $\left(\frac{1}{2} H\right)^{-1}=\frac{1}{2} H$ or $H^{-1}=\frac{1}{4} H$
2. Let A be an $n \times n$ symmetric matrix. Let v, w be non-zero vectors in \mathbf{R}^{n} such that $A v=\lambda_{1} v$ and $A w=\lambda_{2} w$, where λ_{1}, λ_{2} are scalars such that $\lambda_{1} \neq \lambda_{2}$. Show that the standard inner product $(v, w)=0$. (i.e., to prove that Eigen vectors corresponding to distinct Eigen values of a symmetric matrix are orthogonal. Hint: Consider the inner product of v with $A w)$.
Soln: First note that $(v, A w)=v^{T} A w=v^{T} A^{T} w=(A v, w)$. (The second equality used the fact that A is symmetric.) Now $(A v, w)=\left(\lambda_{1} v, w\right)=\lambda_{1}(v, w)$ and $(v, A w)=\left(v, \lambda_{2} w\right)=\lambda_{2}(v, w)$. Thus we have $\left(\lambda_{1}-\lambda_{2}\right)(v, w)=0$. As $\lambda_{1} \neq \lambda_{2}$, we have $(v, w)=0$.
3. Consider the vector $v=[1,2,3]^{T}$ in \mathbf{R}^{3}. Let P be the subspace spanned by the vectors $[1,1,0]^{T}$ and $[0,1,1]^{T}$ (essentially a plane).
4. Find vectors $u, w \in \mathbf{R}^{3}$ such that $v=u+w$ and u is a vector in the plane S and w is a vector orthogonal to S.
Soln: Let $c_{1}=[1,1,0]^{T}$ and $c_{2}=[0,1,1]^{T}$. Normalize c_{1} to yield unit vector $b_{1}=\frac{1}{\sqrt{2}}[1,1,0]^{T}$ in P. Now, using Gram Schmidt process, $b_{2}=\frac{c_{2}-\left(c_{2}, b_{1}\right) b_{1}}{\| c_{2}-\left(c_{2}, b_{1} b_{1} \|\right.}=\frac{1}{\sqrt{6}}[-1,1,2]^{T}$ is a unit vector orthogonal to b_{1}. Thus $\left[b_{1}, b_{2}\right]$ is an orthonormal basis for P.
The orthogonal projection of v to P is given by $u=\left(v, b_{1}\right) b_{1}+\left(v, b_{2}\right) b_{2}$. After calculations we get $u=\left[\frac{1}{3}, \frac{8}{3}, \frac{7}{3}\right]^{T}$. It is easy to see that $w=v-u=\left[\frac{2}{3}, \frac{-2}{3}, \frac{2}{3}\right]^{T}$ is orthogonal to u (why?)
5. Find the distance v from the point in P nearest to v.

Soln: The nearest point in P to v is indeed u. Thus, the distance of P from v is $d(v, u)=$ $\|v-u\|=\|w\|=\frac{2}{\sqrt{3}}$.
3. Find a 3×3 matrix A such that for any vector $v=[x, y, z]^{T}, A v$ gives the component w of v perpendicular to the plane S.
Soln: The projection matrix M_{P} defined by:
$M_{P}=b_{1} b_{1}^{T}+b_{2} b_{2}^{T}=\frac{1}{2}\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]+\frac{1}{6}\left[\begin{array}{ccc}1 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 2 & 4\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}4 & 2 & -2 \\ 2 & 4 & 2 \\ -2 & 2 & 4\end{array}\right]$ has the property that $M_{P}(v)$ gives the orthogonal projection u of v along the plane P. Hence $w=v-M_{P}(v)=$ $\left(I-M_{P}\right)(v)$, where I is the identify matrix. Thus the component w of v normal to u is obtained by multiplying v with the matrix

$$
I-M_{P}=I-b_{1} b_{1}^{T}+b_{2} b_{2}^{T}=\frac{1}{3}\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]
$$

