MFCS September 2018; Name:

1. Give an example of a 3×3 real matrix A that is not the identity matrix such that every non-zero vector in \mathbf{R}^{3} is an Eigen vector of A. Justify your answer.
Soln: For $A=k I$, every non-zero $x \in \mathbf{R}^{3}$ is an Eigen vector with Eigen value k.
2. Let G be a complete graph of 5 vertices. Let A be the adjacency matrix of A. What will be the sum of the Eigen values of A ? Justify your answer.
Soln: The sum of the Eigen values of $A=\operatorname{trace}(A)=0$.
3. Let $T: \mathbf{R}^{3} \mapsto \mathbf{R}^{3}$ satisfy $T(i)=i, T(i+j)=2(i+j)$ and $T(i+j+k)=3(i+j+k)$. Find a basis of Eigen vectors of T. What will be the matrix of T with respect to this basis?
Soln: $b_{1}=i, b_{2}=(i+j), b_{3}=(i+j+k)$ are Eigen vectors with Eigen values 1,2 and 3 respectively. The matrix of T w.r.t this basis will be the 3×3 diagonal matrix with 1,2 and 3 on the diagonal.
4. Let S be a subspace of an inner product space V. Let $s \in S$. Let $t \in S^{\perp}$. Show that s and t are linearly independent.
Soln: Let scalars α, β be such that $\alpha s+\beta t=0$. Then we have, $0=(s, \alpha s+\beta t)=\alpha(s, s)$ Since $s \neq 0,(s, s) \neq 0$. Hence $\alpha=0$. Similarly, $\beta=0$.
5. Let V be a real vector space and T an operator on V. Let a, b, c be three distinct Eigen values of T. Let u, v, w be the corresponding Eigen vectors. Show that u, v, w are linearly independent.
Soln: Let $\alpha u+\beta v+\gamma w=0$ for some scalars α, β, γ. Without loss of generality we may assume that $\gamma \neq 0$. Multiplying the equation with c, we get $c \alpha u+c \beta v+c \gamma w=0$. Then $T(\alpha u+$ $\beta v+\gamma w)=a \alpha u+b \beta v+c \gamma w=0$. Subtracting this equation from the previous one, we get $(c-a) \alpha u+(c-b) \beta v=0$. Since both $c-a$ and $c-b$ are non-zero, it follows that u and v, which are Eigen vectors corresponding to distinct Eigen values a and b are linearly dependent, which is a contradiction. (We had proved in the class that Eigen vectors corresponding to distinct Eigen values must be linearly independent).
6. Let A be an $m \times n$ real matrix. Argue that $\operatorname{Rank}(A) \leq \min \{m, n\}$. (You may assume theorems/results proved in the class, but state which theorems/results are used while using them).
Soln: As A is a linear map from $\mathbf{R}^{n} \mapsto \mathbf{R}^{m}$, by Rank Nullity Theorem $C \operatorname{Rank}(A) \leq m$. Since A^{T} is a linear map from \mathbf{R}^{m} to $\mathbf{R}^{n}, C \operatorname{Rank}\left(A^{T}\right)=\operatorname{Rank}(A) \leq n$. The result follows from the fact that $\operatorname{RRank}(A)=C \operatorname{Rank}(A)$.
