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Lecture 1: Basic Algebraic Structures

Prepared by: K Murali Krishnan

These notes assume that the reader has some familiarity with the notions of groups, rings
fields and vector spaces. The definitions are stated here only for fixing the notation and
exercises list out elementary facts which the reader is expected to know before proceeding
further. Standard facts about matrices and determinants will be used without explanation.

Notation

Let Z, Q, R and C denote the set of integers, rationals, reals and complex numbers respec-
tively. Let N = {0, 1, 2, ..}. We will use the notation Mn(R), Mn(Q), Mn(C) to denote
the set of n× n matrices with real, rational and complex entries.

Groups, Rings Fields and Vector Spaces

Definition 1. A monoid (G, .) is a (non empty) set G together with an associative binary
operator “.′′ on G having an identity element (denoted by 1 or sometimes e). If “.′′ is
commutative, G will be called a commutative monoid. G is a group if in addition every
element in G has an inverse. A commutative group is called an Abelian group.

Exercise 1. Find the category to which (Z,+), (Z, .), (Q,+), (Q, .), (N,+), (N, .) belong to
where, “+′′ and “.′′ represent standard addition and multiplication. What about (Q\{0}, .)?
and (N \ {0}, .)?

Example 1. (Mn(X),+) for X ∈ {Q,R or C } and “+′′ the standard matrix addition is
an Abelian group with zero matrix 0 as identity. (Mn(X), .) for X ∈ {Q,R and C} and “.′′

the standard matrix multiplication is a (non-commutative) monoid with the n × n identity
matrix In as identity. However the set GLn(X) consisting of non-singular n × n matrices
over X forms a (non-Abelian) group with respect to multiplication.

Definition 2. A set (R,+, .) with two operators is a ring (with unity) if (R,+) is an
Abelian group, (R, .) is a monoid and “.′′ distributes over “+′′. A ring R is a commutative
if (R, .) is a commutative monoid. A commutative ring R is a field if (R \ {0}, .) is an
Abelian group. Normally 0 and 1 are used to represent the additive and multiplicative
identities.

Exercise 2. Which among (Z,+, .), (N,+, .), (Q,+, .) are rings?. Which among them are
fields?

Example 2. (Mn(R),+, .) is a non-commutative ring with unity (identity matrix In).
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Vector Spaces

Definition 3. An Abelian group (V,+) is a vector space over a field F if there is scalar
multiplication function “.′′ from F × V to V satisfying (a + b)v = av + bv, a(bv) = (ab)v,
1v = v, a(v + w) = av + aw for all a, b ∈ F and v, w ∈ V . Normally we write V (F ) to
denote a vector space V over field F .

Example 3. Rn over R or Q (but not C – why?) is a vector space with addition and
scalar multiplication defined in the standard way. So is Cn over R, Q or C.

Example 4. If F is any field, the set Fn consisting of n tuples over F is a vector space
over F where multiplication of a vector with a scalar is defined (in the standard way) as
component-wise multiplication. Mn(X) is a vector space over X for X ∈ {Q,R,C}. In
general, if T is any set and F any field, then the set of functions from T to X (denoted
by XT ) is a vector space over F with scalar multiplication defined in the standard way as
(αf)(x) = αf(x). The previous examples are special cases of this general case (how?).

Example 5. If F is a field, the set F [x] of polynomials with coefficients in F is a vector
space over F .

Subspaces

Definition 4. A subset V ′ of a vector space V (F ) is called a subspace if V ′(F ) is a vector
space.

Example 6. Consider F [x] consisting of polynomials with coefficients in F . Consider xF [x]
which are polynomials with no constant term. It is easy to see that xF [x] is a subspace of
F [x] over F . In general x may be replaced in this example with any g(x) ∈ F [x].

Example 7. Consider R2 the two dimensional Cartesian place. Any line through the origin
{(x, y) ∈ R2 : (ax+by = 0)} for any a, b ∈ R is a subspace. This subspace consists of the line
through the origin perpendicular to the vector (a, b). The whole R2 and the single point (0, 0)
are trivial subspaces. In general, in Rn, the (hyper) plane through the origin perpendicular
to the vector (a1, a2, ...an) will be the subspace defined by a1x1 + a2x2 + ...+ anxn = 0.

Example 8. The set of all n × n real matrices with determinant ±1 denoted by SLn(R)
(called orthogonal matrices) is a subgroup of GLn(R) with respect to multiplication.

Exercise 3. Suppose V (F ) is a vector space, show that V ′ ⊆ V is a subspace if and only if
for each v, w ∈ V ′, av + bw ∈ V ′ for any a, b ∈ F .

Exercise 4. Let S = {v1, v2, ..vm} be vectors in a vector space V (F ). Define span(S) =
{a1v1 + a2v2 + ...+ amvm : a1, a2, ..am ∈ F}. Show that span(S) is a subspace of V . Show
that a span of a non-zero vector (x, y, z) in R3(R) is a line through the origin. Show that
two points (x, y, z) and (x′, y′, z′) spans a plane if and only if (0, 0, 0), (x, y, z) and (x′, y′, z′)
are not on the same line.

Definition 5. A Set of vectors S is linearly dependent if there are distinct vectors v1, v2..., vn
in S and scalars a1, a2, ..., an in F , not all zero satisfying a1v1 + a2v2 + ...+ anvn = 0. We
follow the convention that ∅ is linearly independent and {0} linearly dependent.
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A set of vectors S is linearly dependent if S is not linearly independent. That is,
whenever a1v1 + a2v2 + ...+ anv=0 for distinct v1, v2..., vn ∈ S then a1 = a2 = ... = an = 0.

Example 9. The vectors v1

[
1
1

]
and v2

[
2
2

]
are linearly dependent in R2 as 2v1 − v2 = 0.

The vectors e1 =

[
1
0

]
and e2 =

[
0
1

]
are linearly independent.

Example 10. In general, the vectors e1 = [1, 0, ..., 0]T , e2 = [0, 1, 0, ..., 0]T en[0, 0, ..., 1]T

are linearly independent in Rn. Moreover, span({e1, e2, ..., en}) = Rn.

Example 11. {1, x, x2, ..., xn...} forms a linearly independent set in vector space F [x] for
any field F . The span of the set is the whole F [x].

Let S = {v1, v2, ..vm} be vectors in a vector space V (F ). Recall that span(S) = {a1v1 +
a2v2 + ... + amvm : a1, a2, ..am ∈ F} is a subspace of V . Span(S) is essentially the set of
vectors expressible as finite linear combinations of vectors in S. The following lemma says
that a set of vectors in linearly dependent if and only if one of the vectors is the span of
the remaining.

Lemma 1. A set of vectors v1, v2, ..., vn in a vector space V (F ) is linearly dependent if and
only if for some k ≤ n, vk ∈ span(v1, v2, ..vk−1).

Proof. Let k be the smallest index such that v1, v2, ..vk are linearly dependent (why should
such k exist?). Then, there exist a1, a2, ..., ak such that a1v1+a2v2+...+akvk = 0. Moreover,
ak 6= 0 (why?). Hence vk = −(a1/ak)v1 − (a2/ak)v2 + ...− (ak−1/ak)vk−1. Converse is easy
(why?).
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Lecture 2: Finite Dimensional Vector Spaces

Prepared by: K Murali Krishnan

In this lecture we will develop some elementary theory about vector spaces. Let V (F )
be a vector space over field F .

Definition 6. A set S of vectors in V (F ) forms a basis for V if S is linearly independent
and span(S) = V .

Example 12. It is easy to see that v1 = [x, y]T and v2 = [x′, y′]T forms a basis of R2

whenever they do not fall on a line passing through the origin.

Lemma 2. If {x1, x2, ..., xn} spans V and {y1, y2, .., ym} is a linearly independent set, the
m ≤ n. That is, the size of the largest independent set cannot exceed the size of the smallest
spanning set for V (whenever there exists a finite set of vectors that span V ).

Proof. Since ym ∈ span{x1, x2, ..., xn}, the set {ym, x1, x2, ..., xn} is linearly dependent. By
previous lemma, there must be some xi such that xi ∈ span{ym, x1, x2, .., xi−1}. Hence
we can eliminate xi from the set and {ym, x1, x2, .., xi−1, xi+1, ...xn} will be a spanning set.
Now we add ym−1 to this set and remove another xi′ from the resultant set and still get a
spanning set. If we continue this process, xis cannot be finished before all yjs are added
for otherwise we will have yk, yk+1, ..., ym will be a spanning set for some k > 1 and this
will be contradiction as then y1 will be in the span of yk, yk+1, ..., ym. Hence n ≥ m.

We are ready to prove the main theorem:

Theorem 1. If V has a finite basis, then any two basis of V the same number of elements.
This number is called the dimension of V .

Proof. Let S and T be two (finite) basis for V . Since S is spanning and T linearly indepen-
dent, we have |S| ≥ |T | by lemma above. Since T is spanning and S linearly independent,
|T | ≥ |S|. Hence |S| = |T |.

V is said to be a finite dimensional if it has a finite basis. The dimension of V is denoted
by Dim(V ).

Theorem 2. Let {v1, v2, ..., vn} be a basis for a FDVS V (F ). Then for each v ∈ V , there
exists unique a1, a2, ..., an ∈ F such that v = a1v1 +a2v2 + ...+anvn. a1, a2, ..., an are called
the coordinates of v with respect to basis v1, v2, ..., vn.

Proof. Clearly a1, a2, ..., an must exist as {v1, v2, ..., vn} spans V . Suppose v = a1v1+a2v2+
...+ anvn = b1v1 + b2v2 + ...+ bnvn, then (a1 − b1)v1 + (a2 − b2)v2 + ...+ (an − bn)vn = 0.
It follows from linear independence of {v1, v2, ..., vn} that ai = bi for each i.
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To construct a basis for a FDVS V (F ), we can start with any vector v1, pick v2 outside
span(v1), pick v3 outside span(v1, v2) and so forth. The process must terminate in finite
number of steps as otherwise v1, v2, ...vn will be an infinite linearly independent set contra-
dicting the finite dimensionality of V . (why?). Similarly, if W is a subspace of V , we can
extend a basis of W to a basis of V exactly as above. (how?). Essentially we have proved
the following:

Theorem 3. Every finite dimensional vector space V (F ) has a basis. Moreover, basis for
a subspace may be extended to a basis for V .

The facts that every vector space has a basis and that any two basis have the same
cardinality hold for arbitrary vector spaces - finite or infinite dimensional. However a study
of infinite dimensional spaces is beyond our present scope of discussion.

Definition 7. A map T from a vector space V (F ) to another V ′(F ) (the field must be
the same) is a homomorphism (or a linear transformation) if T (v + v′) = T (v) + T (v′)
and T (av) = aT (v) for all v, v′ ∈ V and a ∈ F . A bijective homomorphism is called an
isomorphism.

A isomorphism between two structures indicate that the two are identical except for a
re-naming of elements (via the map).

Definition 8. Let T be a linear transformation between two vector spaces V and V ′. The
image of the map T in V ′ is sometimes denoted by img(T ). The kernel of the map denoted
by ker(T ) is the collection of elements in V that gets mapped to zero in V ′. Dimension of
img(T ) is called Rank(T). Dimension of ker(T ) is called Nullity(T).

Example 13. The map from R3 to R defined by f(x, y, z) = x+y+z is a linear transforma-
tion. The map from R2 to itself which rotates each vector by θ degrees is a homomorphism.

The action of the map on the point

[
x
y

]
is left multiplication by the matrix

[
cosθ −sinθ
sinθ cosθ

]
Exercise 5. Find the kernel and image of the maps above.

Exercise 6. Let F be any field and let α ∈ F . The map Φ from F [x] to F defined by
Φ(f) = f(α) is a homomorphism and is called the “evaluation map at α”. prove that map
is a vector space homomorphism. If F = R and α = 1, what is the kernel and image? What
if α = 0? What if α = π? (Hint: For the last part, you need to know the fact that there is
no polynomial with real (in fact even complex) coefficients which has π as a root).

Exercise 7. Show that the kernel and image of linear transformations must be subspaces)
of the respective spaces.

Exercise 8. Show that a linear is injective if and only if ker(f) = {0} (or identity element
for group homomorphisms). This is important as proving injectivity at zero suffices to prove
injectivity of the map.

Exercise 9. Let T be a bijective linear transformation (isomorphism) between vector spaces
V (F ) and W (F ). Let b1, b2, ..., bn be a basis of V . Show that T (b1), T (b2), ..., T (bn) is a basis
of W . In particular, dim(V ) = dim(W ).
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Theorem 4 (Rank Nullity Theorem). Let T be a linear transformation from V (F ) to
W (F ). Then Rank(T ) +Nullity(T ) = dim(V )

Proof. Let b1, b2, ..., bn be a basis of V . Let Rank(T ) = r and Nullity(T ) = k. Clearly
0 ≤ r, k ≤ n Required to prove that r + k = n.

Consider T (b1), T (b2), .., T (bn). Clearly Img(T ) = Span{T (b1), ..., T (bn)} (why?). Since
Rank(T ) = r, exactly r, any maximal independent subset of these vectors must con-
tain exactly r elements. Without loss of generality, assume T (b1), T (b2)...T (br) are lin-
early independent. Let c1, c2, .., ck be a basis for ker(T ). We will show that the set
S = {b1, b2, ..br, c1, c2, ..., ck} is a basis for V . Note that this proves the theorem (why?).

Suppose α1b1 + ...+αrbr + β1c1 + ...+ βkck = 0. Applying T and noting that T (ci) = 0
for all 1 ≤ i ≤ k, we have T (α1b1 + ...+ αrbr) = α1T (b1) + ...+ αrT (br) = 0. Using linear
independence of bj for 1 ≤ j ≤ r, we get α1 = α2 = ... = αr = 0. Using this fact in the
first equation, we get β1c1 + ...+ βkck = 0. Linear independence of ci for 1 ≤ i ≤ k implies
βi = 0 for all 1 ≤ i ≤ k. This establishes linear independence of S.

Now to show that S spans V , consider any vector v ∈ V . Since T (v) ∈ Img(T ), there
must exist α1, ...+ ., αr in F such that T (v) = α1T (b1)+ ...+αrT (br) = T (α1b1 + ...+αrbr).
Hence T (v − α1b1 − ...− αrbr) = 0 or v − α1b1 − ...− αrbr ∈ ker(T ). Hence there must be
β1, ..., βk in F such that v − α1b1 − ...− αrbr = β1c1 + ...+ βkck. But this guarentees that
v is in the span of S thereby completing the proof (why?).

Exercise 10. Let α be a real number. Consider the map Φα defined from R[x] to R defined
by Φα(f) = f(α). For various values of α, what can you say about ker(Φα) and img(Φα)?
What can you say about Rank(Φα) and Nullity(Φα) for various values of α?

Exercise 11. Let b1, b2, .., bn be a basis for V (F ). Suppose T is a linear map from V
to W (F ) of dimension m. Show that for each choice of (not necessarily distinct vectors)
w1, w2, ..., wn in W and setting T (b1) = w1, T (b2) = w2, ..., T (bn) = wn we get a distinct
linear transformation from V to W . Show that each linear transformation from V to W
corresponds to a unique assignment of values for T (b1), t(b2), ..., T (bn) in W . This result is
often stated as “fixing the image of the basis fixes the linear map”.

Exercise 12. Let V (F ) be a vector space of dimension. Let e1 = [1, 0, .., 0]T , e2 =
[0, 1, ..., 0]T , en = [0, 0, ..., 1]T be the standard basis of the vector space Fn. Let b1, b2, .., bn
be any basis for V (F ). Define the map T (b1) = e1, T (b2) = e2,...,T (bn) = en. Show that T
is an isomorphism. It follows that every vector space of dimension n over F is isomorphic
to Fn.
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Lecture 3: Linear Transformations

Prepared by: K Murali Krishnan

Matrices

Let V (F ) have basis b1, b2, ..., bn and W (F ) have basis c1, c2, ..., cm. Let T be a linear
transformation from V to W . Let T (b1) = a11c1 + a12c2 + ... + a1mcm. In dot prod-
uct notation we write T (b1) = [c1, c2, ..., cm][a11, a12, ..., a1m]T . Similarly, let T (b2) =
[c1, c2, ..., cm][a21, a22, ..., a2m]T ,....., T (bn) = [c1, c2, ..., cm][an1, an2, ..., anm]T .

Let v = x1, b1 + x2b2 + ... + xnbn. for some scalars x1, x2, .., xn. By linearity of T ,,
T (v) = x1T (b1) + x2T (b2) + ... + xnT (bn) = [T (b1), T (b2), ..., T (bn)][x1, x2, ..., xn]T in dot
product notation.

Noting that in dot product notation T (bi) = [c1, c2, ..., cm][ai1, ai2, ..., aim]T , we have in
matrix notation:

[
T (b1) ... T (bn)

] 
x1
x2
..
xn

 =
[
c1 ... cm

] 
a11 a21 ... an1
a12 a22 ... an2
.. .. ... ..
a1m a2m ... anm



x1
x2
..
xn

.

Suppose [y1, y2, ..., ym] are the coordinates of T (v) with respect to basis c1, c2, ..., cm,
then we have the relation:
y1
y2
..
ym

 =


a11 a21 ... an1
a12 a22 ... an2
.. .. ... ..
a1m a2m ... anm



x1
x2
..
xn

. Thus the matrix A =


a11 a21 ... an1
a12 a22 ... an2
.. .. ... ..
a1m a2m ... anm


is called the matrix of the linear transformation with respect to basis b1, b2, ..., bn and
c1, c2, .., cm. Conversely, it is easy to see that any m × n matrix will define a linear trans-
formation for the basis of particular choice. Thus we see a correspondence between m× n
matrices over the field F and linear transformations from V to W .

We have already seen that any n dimensional vector space over F is isomorphic to
Fn. Hence, once we fix a basis for V and W , vectors from V correspond to elements in
Fn, vectors in W correspond to elements in Fm and linear transformation from V to W
correspond to m × n matrices over F . This correspondence draws matrices into the study
of linear transformations.

In these lectures, we will be specific to the following special class of linear transforma-
tions.

Definition 9. A (linear) operator on a vector space V (F ) is a linear transformation
from V to itself.

Once a(ny) basis for an n dimensional vector space V is fixed, each linear operator on
V corresponds to a n × n square matrix. Thus, the set of operators on an n dimensional
space V corresponds precisely to Mn(F ).
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Exercise 13. Let b1, b2, ..., bn be a basis for V (F ). Show that an operator T on V is bijective
if and only if T is injective if and only if T (b1), T (b2), ..., T (bn) are linearly independent.
Note that a linear transformation T is invertible if and only if T is bijective. Show that
T−1 is also a linear operator from V to V . (why?).

Let b1, b2, ..., bn be a basis of V (F ). We have already seen that the map f : V −→ Fn

defined by f(b1) = e1, ..., f(bn) = en is an isomorphism. With this identification, a vector
v = x1b1 + x2b2 + ... + xnbn may be identified with [x1, x2, ..., xn]T ∈ Fn Now, let T be
an operator in V . Then the matrix A of the map has coordinate vectors corresponding to
T (e1), T (e2), ...T (en) as columns (with our identification of ei with bi). In view of the above
exercise, we see that T is invertible if and only if the columns of A are linearly independent.
This in turn happens if and only if the space spanned by the columns of A is the whole of
V (why?). This observation motivates the following definition:

Definition 10. Let A ∈ Fn×n be an n × n matrix. ColumnSpan(A) is defined as the
subsace spanned by the columns of A. RowSpan(A) is defined as the subspace spanned by
the rows of A. The dimensions of the column and row space are called RowRank(A) and
ColumnRank(A) of A.

It follows from the previous discussion that an n×n matrix A over a field F is invertible
if and only if ColumnSpan(A) = Fn. Since we A is invertible if and only if det(A) 6= 0, we
have a correspondance between bijective linear operators and matrices in GLn(F ).

Corollary 1. T : V −→ V is bijective (invertible) if and only if the matrix of T (with
respect to any basis b1, b2, .., bn) is non-singular.

Basis Transformations

We study the effect of basis change on the coordinates of a vector. The matrix of an operator
also changes when basis changes.

Let B = b1, b2, ..., bn and C = c1, c2, ..., cn be two basis for V (F ). Suppose we know
the coordinates of vectors in S′ wrt. those in S. i.e., let c1 = α11b1 + α12b2 + ... + α1nbn,
c2 = α21b1 + α22b2 + ... + α2nbn,..., cn = αn1b1 + αn2b2 + ... + αnnbn. In matrix notation,

[c1, c2, ..., cn] = [b1, b2, ..., bn]Q where, Q =


α11 α21 ... αn1
α12 α22 ... αn2
.. .. ... ..
α1n α2n ... αnn


Since basis transformation is an isomorphism, Q must be invertible (why?). Thus we

have [b1, b2, .., bn] = Q−1[c1, c2, ..., cn]. Suppose now v = x1b1 + x2b2 + ... + xnbn be a
vector with coordinates [x1, x2, ..., xn]T with respect to basis B. What will be the co-
ordinates of v with respect to basis C? That is, we want to find out [y1, y2, ..., yn] ∈
Fn such that v = [c1, c2, ..., cn][y1, y2, ..., yn]T . But v = [b1, b2, ..., bn][x1, x2, ..., xn]T =
[c1, c2, ..., cn]Q−1[x1, x2, ..., xn]T . Hence we have [y1, y2, ..., yn]T = Q−1[x1, x2, ..., xn]T giving
the required relation between coordinate vectors. Q is called the matrix of basis change
from B to C.
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Example 14. In R2, let v have coordinates [1, 1]T w.r.t. the standard basis. To find its
coordinates w.r.t. basis c1 = [1, 1]T and c2 = [1, 0]T , we can see that [c1, c2] = [e1, e2]Q

where Q =

[
1 1
1 0

]
. Thus the new coordinates will be Q−1

[
1
1

]
.

Now we take up the effect of basis change on the matrix of a linear operator on a
FDVS. Let B = {b1, b2, ..., bn} and C = {c1, c2, ..., cn} be two basis for an FDVS V (F ). Let
[c1, c2, ..., cn] = [b1, b2, ..., bn]Q. Let A be the matrix of a linear operator with respect to
basis B. Let v be a vector in V whose coordinate vector w.r.t. basis B is x = [x1, x2, .., xn]T .
It follows that the coordinates of v w.r.t. basis C will be Q−1x.

Since A is the matrix of T w.r.t. basis B, coordinate vector of T (v) w.r.t. basis B will
be Ax. Hence the coordinate vector for T (v) w.r.t. basis C will be Q−1Ax.

Let A′ be the matrix of T w.r.t. basis C. As v has coordinates Q−1x w.r.t. C and
T (v) has coordinates Q−1Ax w.r.t. C, action of A′ on Q−1x must give Q−1Ax. That is, we
must have A′Q−1x = Q−1Ax. Hence we have A′x = Q−1AQx. Since this must hold for all
x ∈ Fn as v was chosen arbitrary, we have A′ = Q−1AQ as the matrix of T for the basis C.

Example 15. T be the linear operator in R2 such that T (

[
1
0

]
) =

[
2
1

]
T (

[
0
1

]
) =

[
0
1

]
The

matrix of T w.r.t. the standard basis is

[
2 0
1 1

]
. If we change the basis to {

[
1
1

]
,

[
0
1

]
} then

the matrix of basis change Q =

[
1 0
1 1

]
. Hence the matrix of T w.r.t this basis will be

Q−1AQ=

[
2 0
0 1

]
Exercise 14. Consider the operator T in R3 given by T (e1) = e1, T (e2) = e1 +e2, T (e3) =
e1 + e2 + e3. What is the matrix of this map w.r.t. the basis b1 = e1 + e2, b2 = e2 + e3 and
b3 = e1 + e3. (Hint, work with the relationship between the basis vectors directly instead of
going for matrix manipulation and note that coordinate vectors of T (b1), T (b2) and T (b3)
in the basis {b1, b2, b3} forms the columns of the matrix to be computed).

Exercise 15. Consider the set Fn[x] consisting of all polynomials of degree less than n
over a field F . Let α1, α2, ..., αn be elements in F . Consider the map T (p(x)) = p(α1) +
p(α2)x + ...,+p(αn)xn in Fn[x]. What is the matrix of the map with respect to the basis
{1, x, x2, ..., xn}? This matrix is called a Vandermone’s matrix. Find the expression for the
determinant of the matrix and show that the map is invertible if and only if α1, α2, ..., αn
are distinct elements in F . This means that interpolation of a degree n − 1 polynomial is
possible only if evaluation at n distinct points are given. Moreover interpolation problem
reduces to matrix inversion.
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Lecture 4: Duality

Prepared by: K Murali Krishnan

In the following, assume that V is a vector space of dimension n over a field F .

Linear Forms

Definition 11. A linear map l from V to F is called a linear form. The set of all linear
forms from V to F will be denoted by V ∗.

Untill stated otherwise, fix basis (b1, b2, · · · , bn) of V . Since F is a one dimensional
vector space over F with basis (1), the matrix of a linear form l w.r.t basis [b1, b2, · · · , bn]
of V and [1] of F will be a 1× n row vector [l(b1), l(b2), · · · , l(bn)]. Thus, each linear from
defines a unique row vector of n scalars over F . Suppose v = x1b1 + x2b2 + · · ·+ xnbn, then

l(v) =
[
l(b1) ... l(bn)

] 
x1
x2
..
xn

 Thus, fixing a basis, we reduce evaluation of a linear from to

a dot product computation. Consequenly, we will think of each linear form as row vector,
once a basis is fixed. The application of a linear from on a vector (column vector) amounts
to finding the dot product of the two vectors.

Exercise 16. Let (b1, b2, · · · , bn) be a basis of V . Let l1, l2 ∈ L(V ). Show that for any
α1, α2 ∈ F , α1l1 + α2l2 ∈ V ∗. What will be matrix (row vector) of α1l1 + α2l2 w.r.t the
basis [b1, b2, · · · , bn] of V and [1] of F?

Exercise 17. Using Exercise 11, conclude that V ∗ is isomorphic to Fn.

Since it is easy to see that α1l1 + α2l2 ∈ V ∗ whenever l1, l2 ∈ L(V ), L(V ) is a vector
space. To find a basis for V ∗, consider the set of linear forms: (l1, l2, · · · , ln) defined as:
l1(b1) = 1, l1(bi) = 0 for i 6= 1, l2(b2) = 1, l2(bi) = 0 for i 6= 2, · · · , ln(bn) = 1, ln(bi) = 0 for
i 6= n. Given a vector v = x1b1 + x2b2 + · · ·+ xnbn, it is easy to see that li(v) = xi (why?).
Thus, the application of the function li simply extracts the ith component of v, with respect
to the basis (b1, b2, · · · , bn).

Exercise 18. Show that the matrix of li with respect to the basis [b1, b2, · · · bn] of V and [1]
of F is eTi where ei is the ith standard basis vector.

Theorem 5. l1, l2, · · · ln is a basis of V ∗.

Proof. Suppose α1l1 +α2l2 + . . .+αnln = 0 for some α1, α2, · · · , αn ∈ F . (Note that this a
an expression involving linear combinations of functions and hence denotes a function. A
function is zero if and only if it yields zero on any argument). Evaluation of the left side at
the vector b1 yields α1l1(b1) + α2l2(b1) + . . .+ αnln(b1) = 0. Since li(b1) = 0 for i 6= 1, this
reduces to α1l1(b1) = 0. Since l1(b1) = 1 by definition, the only possibility is that α1 = 0.
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Similarly αi = 0 for all 1 ≤ i ≤ n. This shows linear independence of l1, l2, · · · ln. Suppose
l ∈ L(V ). Set β1 = l(b1), β2 = l(b2), · · · , βn = l(bn). Note that β1, β2, · · · , βn ∈ F . We
claim that l = β1l1 + β2l2 + . . .+ βnln. To prove this, it suffices to prove that on each basis
vector bi, l(bi) evaluates to the same value as (β1l1 + β2l2 + . . .+ βnln)(bi). Now l(b1) = β1,
whereas (β1l1+β2l2+ . . .+βnln)(b1) = β1 as li(b1) = 0 when i 6= 1 and l1(b1) = 1. Similarly,
the claim holds for each bi.

Definition 12. V ∗ is called the dual space of V . Given basis b1, b2, · · · , bn, the correspond-
ing basis l1, l2 . . . ln of V ∗ as defined above is called the dual basis of V ∗ corresponding to
the basis b1, b2 . . . bn in V .

Exercise 19. Let V,W be vector spaces over field F . Let L(V,W ) be the set of all linear
transformations from V to W . Let b1, b2, · · · , bn be a basis of V and c1, c2, · · · , cm be a basis
of W .

1. Show that L(V,W ) is a vector space.

2. Define the family of linear tranformations li,j : V 7→ W as follows. li,j(bi) = cj.
li,j(bk) = 0 for i 6= k, 1 ≤ i ≤ n, 1 ≤ j ≤ m. What is the matrix of li,j with respect to
the basis b1, b2, · · · , bn of V and c1, c2, · · · cm of W?

3. Show that the set {li,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for L(V,W ). What can you
conclude about the dimension of L(V,W )?

Null Spaces

Let L ⊆ V ∗. We define the null space of L denoted by L0 = {v ∈ V : l(v) = 0 for all l ∈ L}
The null space of L.

We start with some observations.

Exercise 20. Let L ⊆ V ∗ and let S ⊆ V . Let span(L) be the subspace of V ∗ spanned by
L. Define S0 = {l ∈ V ∗ : l(v) = 0 for all v ∈ S} Show that:

1. L0 = span(L)0.

2. L0 is a subspace of V .

3. S0 = span(S)0.

4. S0 is a subspace of V ∗.

Exercise 21. Find L0 for:

1. L = {[1, 1, 1], [0, 0, 1]} in (R3)∗ (assuming standard basis).

2. L = {[0, 1, 1, 0], [1, 0, 0, 1]} in F 4 where F is the binary field F2 containing only el-
ements {0, 1} where addition is the XOR operation and multiplication is the AND
operation.
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Let L be a subspace of V ∗. The next theorem connects the dimension of L with the
dimension of L0.

Theorem 6 (Duality Theorem). Let V be a finite dimensional vector space of dimension
n over field F . Let L be a subspace of V ∗ Then Dim(L0) = n−Dim(L).

Proof. By Exercise 20, L0 is a subspace of V . Let Dim(L0) = k. Let b1, b2, · · · , bk be a
basis for L0. Extend this to a basis bk+1, · · · bn of V . Consider the dual basis l1, l2 . . . ln
of V ∗. It suffices to prove that lk+1, lk+2 . . . ln spans L (why?). Let l ∈ L. Let l =
α1l1 +α2l2 + · · ·+αnln for some scalars α1, α2 . . . αn ∈ F . (why should such scalars exist?).
Since l(b1) = l(b2) = . . . l(bk) = 0 (why?), we have α1 = α2 = · · · = αk = 0 (why?),
completing the proof. (why?)

Corollary 2 (Rank Theorem). Let A ∈ Fn×n. Then RowRank(A) = ColumnRank(A).

Proof. Consider the map defined by A with repsect to the standard basis on Fn. By
Exercise 20, ker(A) = RowSpan(A)0 (why?). Consequently, by Duality theorem we have
Nullity(A) = n − RowRank(A). By the Rank Nullity theorem, we have Nullity(A) =
n− ColumnRank(A).
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Lecture 5: Eigen Values and Vectors

Prepared by: K Murali Krishnan

For the rest of this lecture, let T be a linear operator defined on a vector space V of
dimension n over a field F . A non-zero vector v ∈ V is an Eigen vector of T if there exists
λ ∈ F such that T (v) = λv. Note that the action of T on an Eigen vector v results in a
vector collinar to v. A scalar λ ∈ F is an Eigen value of T if there exists v ∈ V , v 6= 0 such
that T (v) = λv.

Lemma 3. If v1, v2, . . . , vk are Eigen vectors of T with distinct Eigen values λ1, λ2 . . . λk,
then v1, v2 . . . vn are linearly independent.

Proof. Let {v1, v2 . . . vr}, r ≤ k be chosen from v1, v2 . . . vk such that no proper subset of
{v1, v2 . . . vr} is linearly dependent. Let α1v1 + α2v2 + · · ·αrvr = 0 Since T (α1v1 + α2v2 +
· · ·+αrvr) = 0, we have: λ1α1 +λ2α2v2 + · · ·λrαrvr = 0 Multiplying the first equation with
λ1 and subtracting from the second, we get: (λ2−λ1)α2v2+ · · ·+(λn−λ1)αnvn = 0, Which
contradicts the assumption that no proper subset of {v1, v2 . . . vr} is linearly dependent.

An Eigen basis for T is a basis of V consisting of Eigen vectors of V . Let λ be an Eigen
value of T . Eλ = {v ∈ V : T (v) = λv} is called the Eigen space associated with the Eigen
value λ. Clearly Eλ is a subspace of V (why?).

Exercise 22. If b1, b2 . . . bn is a basis of Eigen vectors of T with Eigen values λ1, λ2 . . . λn
respectively (not necessarily distinct), Show that the matrix of T with respect to the basis
b1, b2 . . . bn is a diagonal matrix with λ1, λ2, · · · , λn in the diagonal.

The above exercise shows that a basis of Eigen vectors, if found, would form a convenient
cordinate system to study a linear operator, because with respect to that basis, the matrix
of the operator becomes a diagonal matrix.

Note that v is an Eigen vector of T with Eigen value λ if and only if (T − λI)v = 0,
where I is the identity operator on V defined by I(v) = v for each v ∈ V . Equivalently, v
is an Eigen vector of T if and only if v is a member of the nullspace of the operator T −λI.
Consequenly, λ is an Eigen value of T if and only if the null space of T − λI contains at
least one non-zero vector.

In what follows, assume that [b1, b2, . . . , bn], [c1, c2, . . . , cn] be bases of V with
[c1, c2, . . . cn] = [b1, b2, . . . , bn]Q for some n × n matrix Q over F . Let A be a matrix
of T with respect w.r.t [b1, b2, . . . , bn], then we have already seen that the matrix of T
w.r.t [c1, c2, . . . cn] will be A′ = Q−1AQ. We have further seen that a vector v with
cordinates [x1, x2, . . . , xn]T w.r.t [b1, b2, . . . , bn] will have cordinates Q−1[x1, x2, . . . , xn]T

w.r.t [c1, c2, . . . , cn]. if v is an Eigen value of T with Eigen value λ, A[x1, x2, . . . , xn]T =
λ[x1, x2, . . . , xn]T , or equivalently, (A− λI)[x1, x2, . . . , xn] = 0.

Exercise 23. Show that [x1, x2, . . . , xn] is an Eigen vector of A with Eigen value λ if and
only if Q−1[x1, x2, . . . xn] is an Eigen vector of A′ with Eigen value λ.
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Exercise 24. Show that:

1. det(A− λI) = det(A′ − λI) for any λ ∈ F .

2. det(A− λI) = 0 if and only if λ is an Eigen value of T .

Note that det(A − λI) = 0 is a polynomial equation (in the unknown λ) and can be
solved by standard techniques. The polynomial det(A − λI) is called the characteristic
polynomial and is denoted by χT (λ) of T (we write χ(λ) when T is clear from the context).
Observe that det(A′ − λI) = det(Q−1AQ − Q−1(λI)Q) = det(Q−1)det(A − λI)det(Q) =
det(A − λI) and hence the characteristic polynomial χ(λ) of T does not change when we
change the basis. The Eigen values are the roots of χ(λ).

Exercise 25. Show that χ(0) = det(A). Hence the constant term of the characteristic
polynomial gives the value of the determinant. In particular conclude that similar matrices
have the same determinant.

Exercise 26. If χ(λ) = (x − λ1)(x − λ2) · · · (x − λn) for some λ1, λ2, . . . , λn ∈ F (not
necessarily distinct), show that:

1. det(A) = (−1)n
∏n
i=1 λi. Thus, whenever χ(λ) factorizes completely in F into linear

factors the product of the roots (Eigen values) yields (−1)ndet(A).

2. Show that the sum of the Eigen values is equal to the coefficient of xn−1 of χ(T ).

Exercise 27. Show that T is not bijective if and only if 0 is not an Eigen value of T .
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