Assignment I

Note: Many theory questions included here were discussed in the class. They are included here to refresh your memory. Some other questions are intended to give you practice with the theory. You do not have to submit the assignment. However, the examination question paper will be set assuming that you have acquired the knowledge and skill to solve the assignment questions.

1. Consider the space \mathbf{C}^{2} with the standard (complex) inner product. Consider the following bases: $B=$ $\left(b_{1}=[1,1]^{T}, b_{2}=[1,0]^{T}\right), C=\left(c_{1}=[0,1]^{T}, c_{2}=[1,1]^{T}\right)$. Suppose vectors v_{1} and v_{2} have (complex) coordinates $\left(z_{1}, z_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ respectively with respect to the basis B. (Note that coordinates are complex. For example, $1=1+0 j$ etc.).
2. Find the coordinates of v_{1} with respect to the basis C.
3. Find the inner product $\left(v_{1}, v_{2}\right)$. (Note that neither B nor C is an orthonormal bases).
4. Let $\left[b_{1}, b_{2}, \ldots b_{n}\right]$ and $\left[c_{1}, c_{2}, \ldots c_{n}\right]$ be orthonormal basis of \mathbf{C}^{n} such that $\left[b_{1}, b_{2}, \ldots b_{n}\right]=\left[c_{1}, c_{2}, \ldots c_{n}\right] Q$ for some unitary matrix Q. Let a vector $v \in \mathbf{C}^{n}$ have coordinates $\left[y_{1}, y_{2}, \ldots y_{n}\right]$ w.r.t. basis $\left[c_{1}, c_{2}, \ldots c_{n}\right]$. Show that the coordinates of v w.r.t. basis $\left[b_{1}, b_{2}, \ldots b_{n}\right]$ will be will be $Q^{*} y$.
5. Let $|p\rangle=Z|0\rangle$ and $|q\rangle=Z|1\rangle$, where Z is the Pauli's Z gate. Will $(|p\rangle,|q\rangle)$ be an orthonormal basis of \mathbf{C}^{2} ? Suppose $|v\rangle=\alpha|0\rangle+\beta|1\rangle$, find the coordinates of $|v\rangle$ w.r.t basis $(|p\rangle,|q\rangle)$.
6. Suppose an operator T in \mathbf{C}^{2} satisfies: $T[1,1]^{T}=[1,0]^{T}$ and $T[1,-1]^{T}=[0,1]^{T}$
7. Find the matrix of the operator with respect to the standard basis, $(|0\rangle,|1\rangle)$.
8. Find the matrix of the operator with respect to the basis $\left([0, j]^{T},[-j, 0]\right)$
9. Let T be a linear transformation in \mathbf{C}^{n}. Let $\left[b_{1}, b_{2}, \ldots b_{n}\right]$ and $\left[c_{1}, c_{2}, \ldots c_{n}\right]$ be orthonormal basis of \mathbf{C}^{n} such that $\left[b_{1}, b_{2}, \ldots b_{n}\right]=\left[c_{1}, c_{2}, \ldots c_{n}\right] Q$ for some unitary matrix Q. Suppose the matrix of the linear transformation T with respect to the basis $\left[b_{1}, b_{2}, \ldots b_{n}\right]$ is A, show that the matrix of T with respect to the basis $\left[c_{1}, c_{2}, \ldots c_{n}\right]$ will be $Q A Q^{-1}=Q A Q^{*}$. (Convince yourself that if A and Q are unitary, $Q A Q^{*}$ is also unitary, as one would expect).
10. Let A be a unitary $n \times n$ matrix. Let $\left[b_{1}, b_{2}, \ldots b_{n}\right]$ and $\left[c_{1}, c_{2}, \ldots c_{n}\right]$ be orthonormal basis of \mathbf{C}^{n}. Show that $\left[A b_{1}, A b_{2}, \ldots A b_{n}\right]$ also is an orthonormal basis of \mathbf{C}^{n}.
11. Let $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle),|-\rangle=\frac{1}{\sqrt{2}}|0\rangle-|1\rangle$. What is the matrix of the Pauli X, Y and Z gates with respect to the basis $(|+\rangle,|-\rangle)$?
12. For all $x, y \in \mathbf{C}^{n}$, show that $(x, y)=\frac{1}{4}(\|x+y\|+\|x-y\|-j\|x-j y\|+j\|x+j y\|)$. Using this equality, prove that in \mathbf{C}^{n}, if a linear transformation T satisfies $\|T(z)\|=\|z\|$ for all $z \in \mathbf{C}^{n}$, then T is a unitary transformation.
13. Prove the Cauchy Schwartz inequality, $|(x, y)| \leq\|x\| .\|y\|$ for all $x, y \in \mathbf{C}^{n}$.
14. If A and B are unitary transformations in \mathbf{C}^{n} then show that $A B$ is also unitary.
15. Show that $X=H Z H$ where X, Z are the Pauli gates and H the Hadamard gate.
16. If $x, a \in \mathbf{C}^{n}$ and $y, b \in \mathbf{C}^{m}$. Let A and B be unitary operators in \mathbf{C}^{n} and $y, b \in \mathbf{C}^{m}$ respectively.
17. Show that $(x \otimes y, a \otimes b)=(x, a)(y, b)$.
18. Show that $(A \otimes B)(x \otimes y)=A x \otimes B y$.
19. Show that if $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ and $\left[c_{1}, c_{2}, \ldots c_{m}\right]$ are orthonormal basis of \mathbf{C}^{n} and \mathbf{C}^{m} respectively, $\left[b_{i} \otimes c_{j}\right]_{1 \leq i \leq n, 1 \leq j \leq m}$ is an orthonormal basis for $C^{n} \otimes C^{m}$.
20. Let A, B be unitary transformations in \mathbf{C}^{n} and \mathbf{C}^{m} respectively. Let $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ and $\left[c_{1}, c_{2}, \ldots c_{m}\right]$ be orthonormal basis for \mathbf{C}^{n} and \mathbf{C}^{m} respectively. Show that $\left[A b_{i} \otimes B c_{j}\right]_{1 \leq i \leq n, 1 \leq j \leq m}$ is an orthonormal basis for $C^{n} \otimes C^{m}$.
21. Write down the coordinates with respect to the standard basis $[|00\rangle,|01\rangle|10\rangle|11\rangle]$ of the vectors \mathbf{C}^{4} forming the basis $[X|r\rangle \otimes Z|s\rangle]_{r, s \in\{|0\rangle,|1\rangle\}}$, where X and Y are the Pauli matrices.
22. Find the matrix representation of the operator $X \otimes Z$ with respect to the standard basis $[|00\rangle,|01\rangle|10\rangle|11\rangle]$.
23. A quantum gate in C^{4} is specified by $T(|r\rangle \otimes|s\rangle)=H|r\rangle \otimes|s\rangle$ for $r, s \in\{|0\rangle,|1\rangle\}$, where H is the 2×2 Hadamard matrix. Find the 4×4 unitary matrix for T with respect to the standard basis $[|00\rangle,|01\rangle|10\rangle|11\rangle]$. (What happens if the specification is changed to $T(|r\rangle \otimes|s\rangle$) $=|r\rangle \otimes H|s\rangle$ for $r, s \in\{|0\rangle,|1\rangle\} ?$)
24. Let A be any $n \times n$ unitary matrix. Let $\mathbf{0}$ be the $n \times 1$ column vector of n zeroes. A controlled A gate is defined by $C_{A}=\left[\begin{array}{cc}1 & \mathbf{0}^{\mathbf{T}} \\ \mathbf{0} & A\end{array}\right]$. Show that C_{A} is unitary when A is unitary.
25. Write down the 4×4 matrix w.r.t. the standard basis $[|00\rangle,|01\rangle|10\rangle|11\rangle]$ for
26. Controlled Z gate, C_{Z} w.r.t. the standard basis
27. Controlled $N O T$ gate, C_{X}, where X is the Pauli X matrix.
28. Consider the quantum gate in \mathbf{C}^{4} whose matrix w.r.t the standard basis is $A=(I \otimes H) C_{Z}(I \otimes H)$. What is the connection of A to the C_{X} gate? This shows how to construct the controlled not gate using Pauli X gate and Hadamard gate.
29. Consider the quantum gate G specified by $G(|r\rangle \otimes|s\rangle)=C_{X}(H|r\rangle \otimes|s\rangle)$. Find the representation of the quantum states $\beta_{00}=G|00\rangle, \beta_{01}=G|01\rangle, \beta_{10}=G|10\rangle$ and $\beta_{11}=G|00\rangle$ with respect to the standard basis. These states are called Bell states.
