- 1. Let p be an odd prime. Show that every $a \in Z_p^*$ is a root of the equation $x^p x = 0$. Hence conclude that $x^{p-1} 1 = \prod_{a=1}^{p-1} (x a)$ in Z_p . Comparing constant terms conclude that $(p 1)! = -1(\mod p)$. Prove that if $(p 1)! = -1(\mod p)$ for odd p then p is prime. This is called Wilson's Theorem.
- 2. Let R be a commutative ring with unity. Let $I \subseteq R$ be a subring satisfying the additional property that for all $a \in R, i \in I, ai \in I$.
 - 1. For each $n \in Z$, show that $nZ = \{ni, i \in Z\}$ is an ideal in Z, where Z denotes the set of integers.
 - 2. Let $m, n \in \mathbb{Z}$, show that the set $S(m, n) = \{im + jn, i, j \in \mathbb{Z}\}$ is an ideal in \mathbb{Z} . Let GCD(m, n) = d. Show that S(m, n) = GCD(m, n).
 - 3. For each $a \in R$ define $a + I = \{a + i : i \in I\}$. For $a, b \in R$, define the equivalance relation $T \subseteq R \times R$ by $(a, b) \in T$ if and only if a + I = b + I. Define the set $R/I = \{a + I, a \in R\}$. Now Show the following:
 - (a) T is an equivalance relation. Thus R/I is a partition of R and in fact forms the partition defined by the equivalance relation T.
 - (b) Define addition and multiplication between elements of R/I as (a+I)+(b+I) = ((a+b)+I)and (a+I)(b+I) = (ab+I). Prove that the operations are well defined. (i.e., if (a+I) = (a'+I), (b+I) = (b'+I) then ((a+b)+I) = ((a'+b')+I) and (ab+I) = (a'b'+I) etc.). Which element is the unity?
 - (c) Show that R/I with the above addition and multiplication is a commutative ring with unity. This ring is called the **quotient ring defined by the ideal** I.
 - 4. Let R, R' be commutative rings with unity. A map $f : R \longrightarrow R'$ is a ring homomorphism between R and R' if f(1) = 1, f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b) for all $a, b \in R$. If the map is also bijective, then it is called an isomorphism. Let f be a ring homomorphism from R to R'. Define $ker(f) = \{a \in R : f(a) = 0\}$ and let $img(f) = \{f(a) : a \in R\}$, the image of f
 - (a) Show that ker(f) is an ideal in R.
 - (b) Show that img(f) is a subring of R'
 - (c) Define the map $\overline{f} : R/ker(f) \longrightarrow img(f)$ by f(a+I) = f(a). Show that \overline{f} is a homomorphism from R/ker(f) to img(f). Show that \overline{f} is an isomorphism.
 - 5. Show that Z/nZ is isomorphic to the ring Z_n . (In fact this is the algebraist's way to define the ring Z_n).
- 3. Let $Z_p[X]$ denote the set of polynomial with coefficients in Z_p . Let $f, g \in Z_p[X]$. (Let deg(f) = m, deg(g) = n denote their degrees) Then we can write f = qg + r where deg(r) < deg(g) by normal division by remainder. This yields the Euclid's algorithm for division of polynomials in any field (not necessary finite).
 - 1. Show that $F_p[X]$ is a commutative ring with unity (in fact an integral domain).
 - 2. Define $GCD(\alpha, \beta)$ in $F_p[X]$.
 - 3. Find $GCD(x^3 + 1), x^4 + 1)$ in $F_2[X]$.
 - 4. Let $g \in F_p[X]$. Define $gF_p[X] = \{gf : f \in F_p[X]\}$ show that $gF_p[X]$ is an ideal in $F_p[X]$.
 - 5. The quotient ring $F_p[X]/gF_p[X]$ is (just like the quotient ring Z/nZ in Z) is denoted by $F_p[X]/< g(x) >$
 - 6. How many elements will the quotient ring $F_p[X]/gF_p[X]$ contain? Which among those elements are invertable. (The answers are exactly akin to the answers in the ring Z_n).

- 7. Show that the ring $F_p[X]/\langle g(x) \rangle$ is a field if and only if g is irreducible (i.e. if $g(x) = \alpha(x)\beta(x)$ then one of the factors is a constant, i.e., member of Z_p). (Hint: Recall the proof showing that Z_n is a field iff n is prime). This gives as a way of starting from a field of p elements (viz. Z_p) and construct a field of size p^n using an irreducible polynomial of degree n.
- 8. Show that Z_p is a subfield of $Z_p[X] / \langle g(x) \rangle$.
- 9. Show that elements of $Z_p[X]/\langle g(x) \rangle$ over the field Z_p forms a vector space (with polynomial addition and multiplication defined by the field itself). What is the dimension of the vector space?
- 10. Recall that any finite field of dimension n over Z_p is isomorphic to Z_p^n . In this case, as each element in $Z_p[X]/ < g(x) >$ is a polynomial of degree atmost n-1 the coefficiant vector of the polynomial gives a natural vector representation for each element in the field w.r.t the basis $\{1, x, x^2, ... x^{n-1}\}$
- 11. Consider any $\alpha \in Z_p[X]/ \langle g(x) \rangle$. Consider the elements $1, \alpha, \alpha^2, ...\alpha^n$. Show that these elements are linearly dependent (in the above vector space). This means there exists a $a_0, a_1, ...a_n \in Z_p$ such that $\sum_{i=0}^n a_i \alpha^i = 0$. Hence conclude that every element in $Z_p[X]/ \langle g(x) \rangle$ is a root of some polynomial of degree atmost n = (deg(g)) with coefficients in Z_p . Show that every $\alpha \in Z_p[X]/ \langle g(x) \rangle$ is a root of the polynomial $y^{p^n} y = 0 \in Z_p[Y]$. (The indeterminate has been changed from x to y only to avoid confusion with the elements in $Z_p[X]/ \langle g(x) \rangle$ that are themselves polynomials in variable x.)