1. Let p be an odd prime. Show that every $a \in Z_{p} *$ is a root of the equation $x^{p}-x=0$. Hence conclude that $x^{p-1}-1=\prod_{a=1}^{p-1}(x-a)$ in Z_{p}. Comparing constant terms conclude that $(p-1)!=-1($ $\bmod p)$. Prove that if $(p-1)!=-1(\bmod p)$ for odd p then p is prime. This is called Wilson's Theorem.
2. Let R be a commutative ring with unity. Let $I \subseteq R$ be a subring satisfying the additional property that for all $a \in R, i \in I, a i \in I$.
3. For each $n \in Z$, show that $n Z=\{n i, i \in Z\}$ is an ideal in Z, where Z denotes the set of integers.
4. Let $m, n \in Z$, show that the set $S(m, n)=\{i m+j n, i, j \in Z\}$ is an ideal in Z. Let $G C D(m, n)=d$. Show that $S(m, n)=G C D(m, n)$.
5. For each $a \in R$ define $a+I=\{a+i: i \in I\}$. For $a, b \in R$, define the equivalance relation $T \subseteq R \times R$ by $(a, b) \in T$ if and only if $a+I=b+I$. Define the set $R / I=\{a+I, a \in R\}$. Now Show the following:
(a) T is an equivalance relation. Thus R / I is a partition of R and in fact forms the partition defined by the equivalance relation T.
(b) Define addition and multiplication between elements of R / I as $(a+I)+(b+I)=((a+b)+I)$ and $(a+I)(b+I)=(a b+I)$. Prove that the operations are well defined. (i.e., if $(a+I)=\left(a^{\prime}+I\right),(b+I)=\left(b^{\prime}+I\right)$ then $((a+b)+I)=\left(\left(a^{\prime}+b^{\prime}\right)+I\right)$ and $(a b+I)=\left(a^{\prime} b^{\prime}+I\right)$ etc. $)$. Which element is the unity?
(c) Show that R / I with the above addition and multiplication is a commutative ring with unity. This ring is called the quotient ring defined by the ideal I.
6. Let R, R^{\prime} be commutative rings with unity. A map $f: R \longrightarrow R^{\prime}$ is a ring homomorphism between R and R^{\prime} if $f(1)=1, f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) f(b)$ for all $a, b \in R$. If the map is also bijective, then it is called an isomorphism. Let f be a ring homomorphism from R to R^{\prime}. Define $\operatorname{ker}(f)=\{a \in R: f(a)=0\}$ and let $\operatorname{img}(f)=\{f(a): a \in R\}$, the image of f
(a) Show that $\operatorname{ker}(f)$ is an ideal in R.
(b) Show that $\operatorname{img}(f)$ is a subring of R^{\prime}
(c) Define the map $\bar{f}: R / \operatorname{ker}(f) \longrightarrow \operatorname{img}(f)$ by $f(a+I)=f(a)$. Show that \bar{f} is a homomorphism from $R / \operatorname{ker}(f)$ to $\operatorname{img}(f)$. Show that \bar{f} is an isomorphism.
7. Show that $Z / n Z$ is isomorphic to the ring Z_{n}. (In fact this is the algebraist's way to define the ring Z_{n}).
8. Let $Z_{p}[X]$ denote the set of polynomial with coefficients in Z_{p}. Let $f, g \in Z_{p}[X]$. (Let $\operatorname{deg}(f)=m$, $\operatorname{deg}(g)=n$ denote their degrees) Then we can write $f=q g+r$ where $\operatorname{deg}(r)<\operatorname{deg}(g)$ by normal division by remainder. This yields the Euclid's algorithm for division of polynomials in any field (not necessary finite).
9. Show that $F_{p}[X]$ is a commutative ring with unity (in fact an integral domain).
10. Define $G C D(\alpha, \beta)$ in $F_{p}[X]$.
11. Find $\left.G C D\left(x^{3}+1\right), x^{4}+1\right)$ in $F_{2}[X]$.
12. Let $g \in F_{p}[X]$. Define $g F_{p}[X]=\left\{g f: f \in F_{p}[X]\right\}$ show that $g F_{p}[X]$ is an ideal in $F_{p}[X]$.
13. The quotient ring $F_{p}[X] / g F_{p}[X]$ is (just like the quotient ring $Z / n Z$ in Z) is denoted by $F_{p}[X] /<g(x)>$
14. How many elements will the quotient ring $F_{p}[X] / g F_{p}[X]$ contain? Which among those elements are invertable. (The answers are exactly akin to the answers in the ring Z_{n}).
15. Show that the ring $F_{p}[X] /<g(x)>$ is a field if and only if g is irreducible (i.e. if $g(x)=$ $\alpha(x) \beta(x)$ then one of the factors is a constant, ie., memeber of Z_{p}). (Hint: Recall the proof showing that Z_{n} is a field iff n is prime). This gives as a way of starting from a field of p elements (viz. Z_{p}) and construct a field of size p^{n} using an irreducible polynomial of degree n.
16. Show that Z_{p} is a subfield of $Z_{p}[X] /<g(x)>$.
17. Show that elements of $Z_{p}[X] /<g(x)>$ over the field Z_{p} forms a vector space (with polynomial addition and multiplication defined by the field itself). What is the dimension of the vector space?
18. Recall that any finite field of dimension n over Z_{p} is isomorphic to Z_{p}^{n}. In this case, as each element in $Z_{p}[X] /<g(x)>$ is a polynomial of degree atmost $n-1$ the coefficiant vector of the polynomial gives a natural vector representation for each element in the field w.r.t the basis $\left\{1, x, x^{2}, \ldots x^{n-1}\right\}$
19. Consider any $\alpha \in Z_{p}[X] /<g(x)>$. Consider the elements $1, \alpha, \alpha^{2}, \ldots \alpha^{n}$. Show that these elements are linearly dependent (in the above vector space). This means there exists a $a_{0}, a_{1}, \ldots a_{n} \in$ Z_{p} such that $\sum_{i=0}^{n} a_{i} \alpha^{i}=0$. Hence conclude that every element in $Z_{p}[X] /<g(x)>$ is a root of some polynomial of degree atmost $n=(\operatorname{deg}(g))$ with coefficients in Z_{p}. Show that every $\alpha \in Z_{p}[X] /<g(x)>$ is a root of the polynomial $y^{p^{n}}-y=0 \in Z_{p}[Y]$. (The indeterminate has been changed from x to y only to avoid confusion with the elements in $Z_{p}[X] /<g(x)>$ that are themselves polynomials in variable x.)
