ADVANCED TOPICS IN ALGORITHMS Assignment 2

- 1. Show that for prime $p \ge 3$, $m, n \ge 1$, $(x^{p^m-1}-1)|(x^{p^n-1}-1)$ if and only if m|n.
- 2. Let F be an extension field of (that is, a field containing) Z_p . Show that the elements of F are roots of the polynomial $x^{p^n} - x = 0$ in $Z_p[X]$ for some positive integer n. Conversely, show that for any extension field F of Z_p the set of elements in F that satisfy the polynomial $x^{p^n} - x = 0$ forms a subfield. Conclude (using the previous question) that subfields of a field of p^n elements are precisely fields of p^m elements for each m|n.
- 3. Let m(x) be an irreducible polynomial of degree n in $Z_p[X]$. Show that in the field $F = Z_p[X]/m(x)$ the polynomial m(x) has a root. How many roots does the polynomial have in F? Express the other roots as polynomials of the first root.
- 4. Show that an irreducible polynomial m(x) of degree d divides $x^{p^n} x$ if and only if d divides n.
- 5. Let $\alpha \in F$, F extension of Z_p of degree n, let m(x), the minimal polynomial of α have degree n. Show that $d = ord(\alpha)$ in F^* must satisfy $d|(p^n - 1)$, but d does not divide $p^m - 1$ for any m < n. How many irreducible polynomials of degree d exist? How many of them are monic (that is leading coefficient is 1)? [Note: The last part counts polynomials which are constant multiples of each other only once. Hint: Note that there are $\phi(d)$ elements in F of order d.]
- 6. Let F be a finite extension field of Z_p and let $m(x) \in Z_p[X]$ be an irreducible polynomial of degree dwith a root $\alpha \in F$. Show that m(x) has d (distinct) roots in F. Show that all other roots of m(x) can be expressed in terms of α . (Show that $\alpha, \alpha^p, \alpha^{p^2} \dots, \alpha^{p^d}$ are distinct and are roots of m(x). To prove that m(x) has no other roots, let $q(x) = \prod_{i=1}^{d} (x - \alpha^{p^i})$. Show that $q(x)^p = q(x^p)$ and conclude that the coefficients of q(x) must be in Z_p).
- 7. Let F, F' be two extension fields of Z_p of p^n elements. Let α generate F^* . Let $m_{\alpha}(x)$ be the minimal polynomial of α . Show that degree of $m_{\alpha}(x) = n$. Since $m_{\alpha}(x)$ divides $x^{p^n} - x$ and elements in F'also are roots of $x^{p^n} - x = 0$, there must be some $\beta \in F'^*$ such that $m_{\alpha}(x)$ is the minimal polynomial of β . (Here we are assuming that factorization of $x^{p^n} - x$ is unique in $F_p[X]$.) Show that the map $g: F \longrightarrow F'$ mapping $g(\alpha) = \beta$ defines an isomorphism between F and F'. As a consequence, we see that there is atmost one field of p^n elements.
- 8. This question derives the Möbius inversion formula. Let f,g and h be functions defined from Z^+ to Z^+ . Define the Dirichlet convolution between functions $(f * g)(n) = \sum_{d|n} f(d)g(n/d)$. Show that convolution is associative. Define the identify function I(1) = 1, I(n) = 0, n > 1 and the Möbius function $\mu(1) = 1$, $\mu(n) = 0$ if the square of a prime number divides n and $\mu(n) = (-1)^k$ when n is square free product of k distinct primes. Show that I * f = f for all f and $\mu * u = I$. Hence conclude that if f = g * u (i.e., $f(n) = \sum_{d|n} g(d)$) then $f * \mu = g$ (i.e., $g(n) = \sum_{d|n} f(d)\mu(n/d)$).
- 9. Let $I_p(d)$ be the number of irreducible polynomials of degree d over Z_p . Note that by a previous question, $x^{p^n} x$ splits into all monic irreducible factors of degree d for each d|n. Counting degrees, conclude that $p^n = \sum_{d|n} dI_p(d)$. (Each factor on the right side raises the degree of the product on the RS by d for some d|n). Use Möbius inversion to show that $I_p(n) = \frac{1}{m} \sum_{d|n} \mu(d) p^{n/d}$. Show that $\frac{1}{m} \sum_{d|n} \mu(d) p^{n/d} > 0$ for all n > 0. (Hint: $\sum_{d|n} \mu(d) p^{n/d} > (p^n p^{n/2} p^{n/3} ...) > 0)$). Hence conclude that there exists an irreducible polynomial of degree n in $Z_p[X]$ for all n. This shows the existance of a finite field of p^n for every n. Use the formula to find the number of monic irreducible polynomials of degree 4 in F_{16} .
- 10. Find all the irreducible factors of $x^{16} x$ in $F_2[X]$. Find the order (in the multiplicative group) of the roots of each irreducible factor.
- 11. How many elements in F_{27} are contained in no proper subfield of F_{27} ?