Assignment 2

1. Show that for prime $p \geq 3, m, n \geq 1,\left(x^{p^{m}-1}-1\right) \mid\left(x^{p^{n}-1}-1\right)$ if and only if $m \mid n$.
2. Let F be an extension field of (that is, a field containing) Z_{p}. Show that the elements of F are roots of the polynomial $x^{p^{n}}-x=0$ in $Z_{p}[X]$ for some positive integer n. Conversely, show that for any extension field F of Z_{p} the set of elements in F that satisfy the polynomial $x^{p^{n}}-x=0$ forms a subfield. Conclude (using the previous question) that subfields of a field of p^{n} elements are precisely fields of p^{m} elements for each $m \mid n$.
3. Let $m(x)$ be an irreducible polynomial of degree n in $Z_{p}[X]$. Show that in the field $F=Z_{p}[X] / m(x)$ the polynomial $m(x)$ has a root. How many roots does the polynomial have in F ? Express the other roots as polynomials of the first root.
4. Show that an irreducible polynomial $m(x)$ of degree d divides $x^{p^{n}}-x$ if and only if d divides n.
5. Let $\alpha \in F, F$ extension of Z_{p} of degree n, let $m(x)$, the minimal polynomial of α have degree n. Show that $d=\operatorname{ord}(\alpha)$ in F^{*} must satisfy $d \mid\left(p^{n}-1\right)$, but d does not divide $p^{m}-1$ for any $m<n$. How many irreducible polynomials of degree d exist? How many of them are monic (that is leading coefficient is 1)? [Note: The last part counts polynomials which are constant multiples of each other only once. Hint: Note that there are $\phi(d)$ elements in F of order d.]
6. Let F be a finite extension field of Z_{p} and let $m(x) \in Z_{p}[X]$ be an irreducible polynomial of degree d with a root $\alpha \in F$. Show that $m(x)$ has d (distinct) roots in F. Show that all other roots of $m(x)$ can be expressed in terms of α. (Show that $\alpha, \alpha^{p}, \alpha^{p^{2}} \ldots, \alpha^{p^{d}}$ are distinct and are roots of $m(x)$. To prove that $m(x)$ has no other roots, let $q(x)=\prod_{i=1}^{d}\left(x-\alpha^{p^{i}}\right)$. Show that $q(x)^{p}=q\left(x^{p}\right)$ and conclude that the coefficients of $q(x)$ must be in $\left.Z_{p}\right)$.
7. Let F, F^{\prime} be two extension fields of Z_{p} of p^{n} elements. Let α generate F^{*}. Let $m_{\alpha}(x)$ be the minimal polynomial of α. Show that degree of $m_{\alpha}(x)=n$. Since $m_{\alpha}(x)$ divides $x^{p^{n}}-x$ and elements in F^{\prime} also are roots of $x^{p^{n}}-x=0$, there must be some $\beta \in F^{* *}$ such that $m_{\alpha}(x)$ is the minimal polynomial of β. (Here we are assuming that factorization of $x^{p^{n}}-x$ is unique in $F_{p}[X]$.) Show that the map $g: F \longrightarrow F^{\prime}$ mapping $g(\alpha)=\beta$ defines an isomorphism between F and F^{\prime}. As a consequence, we see that there is atmost one field of p^{n} elements.
8. This question derives the Möbius inversion formula. Let f, g and h be functions defined from Z^{+}to Z^{+}. Define the Dirichlet convolution between functions $(f * g)(n)=\Sigma_{d \mid n} f(d) g(n / d)$. Show that convolution is associative. Define the identify function $I(1)=1, I(n)=0, n>1$ and the Möbius function $\mu(1)=1, \mu(n)=0$ if the square of a prime number divides n and $\mu(n)=(-1)^{k}$ when n is square free product of k distinct primes. Show that $I * f=f$ for all f and $\mu * u=I$. Hence conclude that if $f=g * u$ (i.e., $\left.f(n)=\Sigma_{d \mid n} g(d)\right)$ then $f * \mu=g$ (i.e., $g(n)=\Sigma_{d \mid n} f(d) \mu(n / d)$).
9. Let $I_{p}(d)$ be the number of irreducible polynomials of degree d over Z_{p}. Note that by a previous question, $x^{p^{n}}-x$ splits into all monic irreducible factors of degree d for each $d \mid n$. Counting degrees, conclude that $p^{n}=\Sigma_{d \mid n} d I_{p}(d)$. (Each factor on the right side raises the degree of the product on the RS by d for some $d \mid n$). Use Möbius inversion to show that $I_{p}(n)=\frac{1}{m} \Sigma_{d \mid n} \mu(d) p^{n / d}$. Show that $\frac{1}{m} \Sigma_{d \mid n} \mu(d) p^{n / d}>0$ for all $n>0$. (Hint: $\Sigma_{d \mid n} \mu(d) p^{n / d}>\left(p^{n}-p^{n / 2}-p^{n / 3}-\ldots\right)>0$). Hence conclude that there exists an irreducible polynomial of degree n in $Z_{p}[X]$ for all n. This shows the existance of a finite field of p^{n} for every n. Use the formula to find the number of monic irreducible polynomials of degree 4 in F_{16}.
10. Find all the irreducible factors of $x^{16}-x$ in $F_{2}[X]$. Find the order (in the multiplicative group) of the roots of each irreducible factor.
11. How many elements in F_{27} are contained in no proper subfield of F_{27} ?
