
Chapter 7


Introduction to finite fields


This chapter provides an introduction to several kinds of abstract algebraic structures, partic-
ularly groups, fields, and polynomials. Our primary interest is in finite fields, i.e., fields with 
a finite number of elements (also called Galois fields). In the next chapter, finite fields will be 
used to develop Reed-Solomon (RS) codes, the most useful class of algebraic codes. Groups and 
polynomials provide the requisite background to understand finite fields. 

A field is more than just a set of elements: it is a set of elements under two operations, 
called addition and multiplication, along with a set of properties governing these operations. 
The addition and multiplication operations also imply inverse operations called subtraction and 
division. The reader is presumably familiar with several examples of fields, such as the real field 
R, the complex field C, the field of rational numbers Q, and the binary field F2. 

7.1 Summary 

In this section we briefly summarize the results of this chapter. The main body of the chapter 
will be devoted to defining and explaining these concepts, and to proofs of these results. 

For each prime  p and positive integer m ≥ 1, there exists a finite field Fpm with pm elements, 
mand there exists no finite field with q elements if q is not a prime power. Any two fields with p

elements are isomorphic. 

The integers modulo p form a prime field Fp under mod-p addition and multiplication. The 
polynomials Fp[x] over Fp modulo an irreducible polynomial g(x) ∈ Fp[x] of degree  m form a 
finite field with pm elements under mod-g(x) addition and multiplication. For every prime p, 
there exists at least one irreducible polynomial g(x) ∈ Fp[x] of each positive degree  m ≥ 1, so 
all finite fields may be constructed in this way. 

Under addition, Fpm is isomorphic to the vector space (Fp)m. Under multiplication, the nonzero 
m−2elements of Fpm form a cyclic group {1, α, . . . , αp } generated by a primitive element α ∈ Fpm . 

The elements of Fpm are the pm roots of the polynomial xpm − x ∈ Fp[x]. The polynomial 
m 

xp − x is the product of all monic irreducible polynomials g(x) ∈ Fp[x] such that deg g(x) 
divides m. The roots of a monic irreducible polynomial g(x) ∈ Fp[x] form a cyclotomic coset of 
deg g(x) elements of  Fpm which is closed under the operation of raising to the pth power. 

For every n that divides m, Fpm contains a subfield with pn elements. 
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For further reading on this beautiful subject, see [E. R. Berlekamp, Algebraic Coding The-
ory, Aegean Press, 1984], [R. Lidl and H. Niederreiter, Introduction to Finite Fields and their 
Applications, Cambridge University Press, 1986] or [R. J. McEliece, Finite Fields for Com-
puter Scientists and Engineers, Kluwer, 1987], [M. R. Schroeder, Number Theory in Science and 
Communication, Springer, 1986], or indeed any book on finite fields or algebraic coding theory. 

7.2 The integers 

We begin with a brief review of the familiar factorization properties of the set Z of integers. We 
will use these properties immediately in our discussion of cyclic groups and their subgroups and 
of prime fields. Moreover, we will model our later discussion of the factorization properties of 
polynomials on the discussion here. 

7.2.1 Definitions 

An integer n is said to be a divisor of an integer i if i is an integer multiple of n; i.e., i = qn for 
some integer q. Thus all integers are trivially divisors of 0. 

The integers that have integer inverses, namely ±1, are called the units of Z. If  u is a unit 
and n is a divisor of i, then  un is a divisor of i and n is a divisor of ui. Thus the factorization 
of an integer can only be unique up to a unit u, and  ui has the same divisors as i. We therefore 
consider only factorizations of positive integers into products of positive integers. 

Every nonzero integer i is divisible by 1 and i; these divisors are called trivial. An integer n 
is said to be a factor of an integer i if n is positive and a nontrivial divisor of i. For example, 1 
has no nontrivial divisors and thus no factors. 

A positive integer that has no nontrivial divisors is called a prime integer. 

7.2.2 Mod-n arithmetic 

Given a positive integer n, every integer i may be uniquely expressed as i = qn + r for some 
integer remainder r in the interval 0 ≤ r ≤ n − 1 and some integer quotient q. This  may  be  
proved by the Euclidean division algorithm, which if i ≥ n just subtracts n from i repeatedly 
until the remainder lies in the desired interval. 

The remainder r, denoted by r = i mod n, is the more important part of this expression. The 
set of possible mod-n remainders is the set of n integers Rn = {0, 1, . . . , n  − 1}. Evidently n is 
a divisor of i if and only if i mod n = 0.  

Remainder arithmetic using the mod-n remainder set Rn is called “mod-n arithmetic.” The 
rules for mod-n arithmetic follow from the rules for integer arithmetic as follows. Let r = i mod n 
and s = j mod n; then, as integers, r = i − qn and s = j − tn for some quotients q and t. Then  

r + s = i + j − (q + t)n; 
2 rs = ij − (qj + ti)n + qtn . 

Hence (r + s) mod  n = (i + j) mod  n and rs mod n = ij mod n; i.e., the mod-n remainder of 
the sum or product of two integers is equal to the mod-n remainder of the sum or product of 
their mod-n remainders, as integers. 
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The mod-n addition and multiplication rules are therefore defined as follows: 

r ⊕ s = (r + s) mod  n; 
r ∗ s = (rs) mod  n, 

where “r” and  “s” denote elements of the remainder set Rn on the left and the corresponding 
ordinary integers on the right. This makes mod-n arithmetic consistent with ordinary integer 
arithmetic in the sense expressed in the previous paragraph. 

7.2.3 Unique factorization 

Given a positive integer i, we  may  factor  i into a unique product of prime factors by simply 
factoring out primes no greater than i until we arrive at the quotient 1, as the reader has known 
since grade school. For the time being, we will take this unique factorization property as given. 
A proof will be given as an exercise after we prove the corresponding property for polynomials. 

7.3 Groups 

We now introduce groups. 

Definition 7.1 A group is a set of elements G = {a, b, c, . . .} and an operation ⊕ for which the 
following axioms hold: 

• Closure: for any a ∈ G, b ∈ G, the element a ⊕ b is in G. 

• Associative law: for any a, b, c ∈ G, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c). 

• Identity: There is an identity element 0 in G for which a ⊕ 0 = 0  ⊕ a = a for all a ∈ G. 

• Inverse: For each a ∈ G, there is an inverse (−a) such that a ⊕ (−a) = 0. 

In general it is not necessary that a ⊕ b = b ⊕ a. A group G for which a ⊕ b = b ⊕ a for all 
a, b ∈ G is called abelian or commutative. In these notes all groups will be abelian. 

In view of the associative law, we may write (a⊕b)⊕c as a⊕b⊕c without ambiguity. Moreover, 
in an abelian group the elements a, b, c may be written in any  order.  

Frequently, the operation in a group is called multiplication, usually represented either by ∗ 
or juxtaposition. The identity is then denoted by 1 (or e) and the inverse of a by a−1 . Additive 
notation is generally used only for abelian groups, whereas multiplicative notation is used for 
both abelian and nonabelian groups. Since we consider only abelian groups, we will use additive 
notation when the nature of the group is unspecified. 

As an example, the set of integers Z with the usual addition operation + forms an abelian 
group. Also, the real field R forms an additive abelian group under ordinary addition in which 
the identity is 0 and the inverse of a is −a. More interestingly, as the reader should verify, 
the nonzero elements of R form a multiplicative abelian group under ordinary multiplication, in 
which the identity is 1 and the inverse of a is a−1 = 1/a. We will see that every field has similar 
additive and multiplicative group properties. 
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This example illustrates that the group structure (i.e., the properties stemming from the group 
operation ⊕) may reflect only part of the structure of the given set of elements; e.g., the additive 
group structure of R takes no account of the fact that real numbers may also be multiplied, and 
the multiplicative group structure of R −{0} takes no account of the fact that real numbers may 
also be added. 

We abbreviate b ⊕ (−a) for any a, b ∈ G by b − a and regard “−” as an additional opera-
tion implicitly defined by the axioms. In an additive group, “−” is called subtraction; in a 
multiplicative group, “−” is called division and denoted by / or ÷. 

Because of the inverse operation, cancellation is always permissible; i.e., if x ⊕ a = y ⊕ a, we  
can add −a to both sides, showing that x = y. Similarly, one can move terms from one side of 
an equation to the other; i.e., x ⊕ a = y implies x = y − a. 

Exercise 1 (Inverses and cancellation) 

(a) Verify the following set of implications for arbitrary elements a, b of a group G which is 
not necessarily abelian: 

b ⊕ a = 0  ⇒ b = −a ⇒ a ⊕ b = 0  ⇒ a = −b ⇒ b ⊕ a = 0. 

(b) Use this result to show that the inverse is unique, i.e., that a ⊕ b = 0  ⇒ b = −a, and  
that the inverse also works on the left, i.e., b ⊕ a = 0  ⇒ b = −a. Note that this shows that 
cancellation is permitted on either the right or the left. 

(c) Show that the identity element is unique, i.e., that for a, b ∈ G, a ⊕ b = a ⇒ b = 0 and 
b ⊕ a = a ⇒ b = 0.  

= ak , then  ai ⊕aj �

If G has a finite number of elements, G = {a1, a2, . . . , an}, then  G is said to be finite and 
|G| = n is said to be the order of G. The group operation ⊕ may then be specified by an  n× n 
“addition table” whose entry at row i, column j is ai ⊕ aj . The cancellation property implies 
that if aj � = ai ⊕ak . This means that all elements in any row i of the addition 
table are distinct; i.e., each row contains each element of G exactly once. Similarly, each column 
contains each element of G exactly once. Thus the group axioms restrict the group operation ⊕ 
more than might be immediately evident. 

7.3.1 Alternative group axioms 

The property that a “row of the addition table,” namely a ⊕ G = {a ⊕ b | b ∈ G} is just the set 
of elements of G in a different order (i.e., a permutation of G) is a fundamental property of any 
group G. We will now show that this permutation property may be taken as one of the group 
axioms. Subsequently we will use this property to prove that certain sets are groups. 

Theorem 7.1 (Alternative group axioms) Let G = {a, b, c, . . .} be a set of elements on 
which an operation ⊕ is defined. Then G is a group under the operation ⊕ if and only if the 
following axioms hold: 

• Associative law: for any a, b, c ∈ G, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c). 

• Identity: There is an identity element 0 in G for which a ⊕ 0 = 0  ⊕ a = a for all a ∈ G. 

• Permutation property: For each a ∈ G, a ⊕ G = {a ⊕ b | b ∈ G} is a permutation of G. 
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Proof. (⇒) If  G is a group under ⊕, then by the closure property every element a ⊕ b is in G. 
Moreover, the fact that a ∈ G has an inverse −a ∈ G implies that every element b ∈ G may be 
written as a⊕ (−a⊕ b) ∈ a⊕G, so every element of G is in a⊕G. Finally, from the cancellation 
property, a⊕ b = a⊕ c implies b = c. Thus the correspondence between G and a⊕G defined by 
b ↔ a ⊕ b is one-to-one; i.e., a permutation. 

(⇐) Conversely, if a⊕G is a permutation of G for every a ∈ G, then (a) the closure property 
holds; i.e., a ⊕ b ∈ G for all a, b ∈ G; (b) since 0 ∈ a ⊕ G, there must exist a unique b ∈ G such 
that a⊕ b = 0,  so  a has a unique inverse −a = b under ⊕. Thus  G is a group under ⊕. 

The properties of “rows” a⊕G hold equally for “columns” G⊕ a, even when  G is nonabelian. 

For example, the set R ∗ of nonzero elements of the real field R form an abelian group under 
real multiplication, because real multiplication is associative and commutative with identity 1, 
and αR ∗ is a permutation of R ∗ for any α ∈ R ∗ . 

Exercise 2 (Invertible subsets). 

(a) Let H be a set of elements on which an associative operation ⊕ is defined with identity 0, 
and let G be the subset of elements h ∈ H which have unique inverses −h such that h⊕−h = 0.  
Show that G is a group under ⊕. 

(b) Show that the nonzero elements of the complex field form a group under complex multi-
plication. 

(c) Show that the set of invertible n × n real matrices forms a (nonabelian) group under real 
matrix multiplication. 

(d) What are the invertible elements of Z under multiplication? Do they form a group? 

7.3.2 Cyclic groups 

An important example of a finite abelian group is the set of remainders Rn = {0, 1, . . . , n − 1}
under mod-n addition, where n is a given positive integer. This group is called “the integers 
mod n” and is denoted by Zn. Note that Z1 is the trivial group {0}. 

A finite cyclic group is a finite group G with a particular element g ∈ G, called the generator, 
such that each element of G can be expressed as the sum, g⊕· · ·⊕g,  of some number of repetitions  

1of g. Thus each element of G appears in the sequence of elements {g, g⊕ g, g⊕ g⊕ g, . . .}. We  
denote such an i-fold sum by ig, where  i is a positive integer and g is a group element; i.e., 

1g = g, 2g = g ⊕ g, . . . , ig  = g ⊕ · · · ⊕ g, . . .  

i terms 

Since g generates G and G includes the identity element 0, we must have ig = 0 for some positive 
integer i. Let  n be the smallest such integer; thus ng = 0 and ig �= 0  for  1  ≤ i ≤ n − 1. Adding 

= 0 results in (i + j)g �the sum of j g’s for any j >  0 to each side of ig � = jg. Thus the elements 
{1g, 2g, . . . , ng  = 0} must all be different. 

1Mathematicians say also that an infinite group G = {. . . ,−1g, 0g, 1g, 2g, . . .} generated by a single element g 
is cyclic; e.g., the group of integers Z is an infinite cyclic group with generator 1. Although such infinite cyclic 
groups have the single-generator property of finite cyclic groups, they do not “cycle.” Hereafter, “cyclic group” 
will mean “finite cyclic group.” 
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We can also add jg to both sides of the equality ng = 0, yielding (j + n)g = jg for any j >  0. 
Thus for each i > n, ig is equal to some earlier element in the sequence, namely (i − n)g. The  
elements {1g, 2g, . . . , ng  = 0} therefore constitute all of the distinct elements in G, and  the  order  
of G is |G| = n.  If we define  0g to be the identity 0, then the elements of G may be conveniently  
represented as G = {0g = 0, 1g, . . . , (n − 1)g}. 

Figure 1 illustrates the cyclic structure of G that arises from the relation (j + n)g = jg. 

0 =  ng = 2ng = · · ·  
r 

g = (n + 1)g = · · ·  
rr(n − 1)g = 

(2n − 1)g = · · ·  

r r 2g = (n + 2)g = · · ·  

r r 3g = (n + 3)g = · · ·  
r 
4g = (n + 4)g = · · ·  

Figure 1. The cyclic structure of a cyclic group: the sequence {1g, 2g, . . .} goes from the group 
element g up to ng = 0, then returns to g and continues to cycle. 

Addition in a cyclic group of order n can be understood in terms of mod-n addition. In 
particular, since ng =  0,  we also have 2ng = 0, 3ng = 0, etc. Since any integer i may be uniquely  
written as i = qn + r where the remainder r = i mod n is in the set Rn = {0, 1, . . . , n − 1}, we  
have ig = (qn)g + rg = rg, where  rg = (i mod n)g is one of the elements of G. The addition 
rule of G is thus as follows: for each 0 ≤ i, j < n, 

ig ⊕ jg = (i + j mod n)g. 

Evidently 0g is the identity, and the inverse of a nonzero element ig is (n − i)g. 

We thus see that any cyclic group G of order n is essentially identical to Zn. More precisely, 
the correspondence ig ∈ G ↔ i ∈ Zn is preserved under addition; i.e., ig ⊕ jg ↔ i ⊕ j for each 
i, j ∈ Zn. This type of correspondence is called an isomorphism. Specifically, two finite groups 
G and H are isomorphic if there exists an invertible2 function h : G → H mapping each α ∈ G 
into a β = h(α) ∈ H such that h(α ⊕ α′) =  h(α) ⊕ h(α′), where ⊕ denotes the group operation 
of G on the left and that of H on the right. In summary: 

Theorem 7.2 (Cyclic groups) The elements of a cyclic group G of order n with generator 
g are {0g, 1g, 2g, . . . , (n − 1)g}. The addition rule is ig ⊕ jg = (i + j mod n)g, the identity is 
0g, and the inverse of ig �= 0g is (n− i)g. Finally, G is isomorphic to Zn under the one-to-one 
correspondence ig ↔ i. 

Since Zn is abelian, it follows that all cyclic groups are abelian. 

In multiplicative notation, the elements of a cyclic group G of order n with generator g are 
1 2denoted by {g0 = 1, g , g , . . . , gn−1}, the multiplication rule is gi ∗gj = g(i+j mod n), the  identity  

is g0 = 1, and the inverse of g �i = 1  is  gn−i. For example, if ω = e2πi/n , the set {1, ω, ω2, . . . , ωn−1}
of complex nth roots of unity is a cyclic group under complex multiplication, isomorphic to Zn. 

2A function h : G → H is called invertible if for each β ∈ H there is a unique α ∈ G such that β = h(α). An 
invertible function is also called a one-to-one correspondence, denoted by G ↔ H. 
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7.3.3 Subgroups 

A subgroup S of a group  G is a subset of the elements of the group such that if a, b ∈ S, then  
a ⊕ b ∈ S and −a ∈ S. A subgroup S therefore includes the identity element of G and the 
inverse of each element in S. The associative law holds for S since it holds for G. Therefore a 
subgroup S ⊆ G is itself a group under the group operation of G. 

For example, the set of integers Z is a subgroup of the additive group of R. 

If G is abelian, then S must be abelian; however, S may be abelian even if  G is nonabelian. 

For any g ∈ G, we define the coset (translate) S ⊕ g = {s ⊕ g | s ∈ S}. The zero coset S ⊕ 0 is  
thus equal to S itself; moreover, by Theorem 7.1, S ⊕ g = S whenever g ∈ S. 

The following theorem states a more general result: 

Lemma 7.3 (Cosets) Two cosets S ⊕ g and S ⊕ h are the same if g − h ∈ S, but are disjoint 
if g − h /∈ S. 

Proof. If  g − h ∈ S, then the elements of S ⊕ h include (g − h) ⊕ h = g and therefore all 
elements of S ⊕ g, so  S ⊕ g ⊆ S ⊕ h; similarly S ⊕ h ⊆ S ⊕ g. 

On the other hand, if S ⊕ g and S ⊕ h have any element in common, say s ⊕ g = s′ ⊕ h, then  
g − h = s′ − s ∈ S; thus,  g − h /∈ S implies that S ⊕ g and S ⊕ h are disjoint. 

It follows that the distinct cosets S ⊕ g of a subgroup S ⊆ G form a disjoint partition of G, 
since every element g ∈ G lies in some coset, namely S ⊕ g. 

The elements s⊕g of a coset  S ⊕g are all distinct, since s⊕g = s′ ⊕g implies s = s′. Therefore 
if S is finite, then all cosets of S have the same size, namely the size |S| of S = S ⊕ 0. If G is 
finite, G is therefore the disjoint union of a finite number |C| of cosets of S ⊆ G,  each of size  
|S|, so  |G| = |C||S|. This proves Lagrange’s theorem: 

Theorem 7.4 (Lagrange) If S is a subgroup of a finite group G, then |S| divides |G|. 

7.3.4 Cyclic subgroups 

Given any finite group G and any element g ∈ G, the set of elements generated by g, namely 
S(g) =  {g, g ⊕ g, . . .}, is a cyclic subgroup of G. The  order of g is defined as the order |S(g)|
of S(g). By Lagrange’s theorem, |S(g)| divides |G|, and by the cyclic groups theorem, S(g) is  
isomorphic to Z|S(g)|. (If  g = 0,  then  S(g) =  {0} and |S(g)| = 1. We will assume g �= 0.)  

As a fundamental example, let G be the cyclic group Zn = {0, 1, . . . , n  − 1}, and  let  S(m) be  
the cyclic subgroup {m, 2m, . . .} generated by m ∈ Zn. Here  im = m⊕· · ·⊕m is simply the sum 
of m with itself i times; i.e., im ∈ G is the ordinary product im mod n. The order |S(m)| of 
S(m) is the least positive integer k such that km = 0  mod  n; i.e., such that the integer product 
km is divisible by n. Thus  km is the least common multiple of m and n, denoted lcm(m, n), and 
|S(m)| = k = lcm(m, n)/m. By elementary number theory, lcm(m, n) =  mn/ gcd(m, n) for any 
positive integers m, n, so we may alternatively write |S(m)| = n/ gcd(m, n), where gcd(m, n) 
denotes the greatest common divisor of m and n. This shows explicitly that |S(m)| divides n. 

For example, suppose n = 10  and  m = 4.  Then  S(4) = {4, 8, 2, 6, 0}. Thus  |S(4)| = 5,  
consistent with |S(4)| = lcm(4, 10)/4 = 20/4 or  |S(4)| = 10/ gcd(4, 10)/4 = 10/2. 
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Now when does S(m) =  Zn? This occurs if and only if gcd(m, n) = 1;  i.e., if and only if m is 
relatively prime to n. In  short,  m generates Zn and has order |S(m)| = n if and only if m and 
n are relatively prime. The number of integers in the set {0, 1, . . . , n − 1} that have order n is 
called the Euler number φ(n). 

For example, in Z10 the integers that are relatively prime to 10 are {1, 3, 7, 9}, so  φ(10) = 4. 
The order of the other elements of Z10 are as follows: 

• 0 is the only element of order 1, and S(0) = {0}. 
• 5 is the only element of order 2, and S(5) = {0, 5}. 
• {2, 4, 6, 8} have order 5, and S(2) = S(4) = S(6) = S(8) = {0, 2, 4, 6, 8}. 

In general, Zn has a cyclic subgroup Sd of order d for each positive integer d that divides n, 
including 1 and n. Sd consists of {0, n/d, 2n/d, . . . , (d−1)n/d}, and is isomorphic to Zd. Sd thus 
contains φ(d) elements that are relatively prime to d,  each of which  has order  d and generates 
Sd. The remaining elements of Sd belong also to smaller cyclic subgroups. 

For example, Z10 has a subgroup S5 = {0, 2, 4, 6, 8} with 5 elements. Four of these elements, 
namely {2, 4, 6, 8}, are relatively prime to 5 and generate S5. The remaining element of S5, 
namely 0, has order 1. 

Since every element of Zn has some definite order d that divides n, we have  

n = φ(d). (7.1) 
d: d|n 

The notation d : d|n means the set of positive integers d, including 1 and n, that divide n. 
All Euler numbers may be determined recursively from this expression. For example, φ(1) = 
1, φ(2) = 2 − φ(1) = 1, φ(3) = 3 − φ(1) = 2, φ(4) = 4 − φ(1) − φ(2) = 2, . . .. 

Exercise 3. Show that φ(n) ≥ 1 for all n ≥ 1. [Hint: Find the order of 1 in Zn.] 

Since every cyclic group G of size n is isomorphic to Zn, these results apply to every cyclic 
group. In particular, every cyclic group G of size n has φ(n) generators that generate G, which  
are called the primitive elements of G. G also contains one cyclic subgroup of size d for each d 
that divides n. 

Exercise 4. Show that every subgroup of Zn is cyclic. [Hint: Let s be the smallest nonzero 
element in a subgroup S ⊆ Zn, and compare S to the subgroup generated by s.] 
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7.4 Fields 

Definition 7.2 A field is a set F of at least two elements, with two operations ⊕ and ∗, for  
which the following axioms are satisfied: 

• The set F forms an abelian group (whose identity is called 0) under the operation ⊕. 

• The set F ∗ = F − {0} = {a ∈ F, a  �= 0} forms an abelian group (whose identity is called 1) 
under the operation ∗. 

• Distributive law: For all a, b, c ∈ F, (a ⊕ b) ∗ c = (a ∗ c) ⊕ (b ∗ c). 

The operation ⊕ is called addition (and often denoted by +), and the operation ∗ is called 
multiplication (and often denoted by juxtaposition). As in ordinary arithmetic, we often omit the 
parentheses around a product of elements, using the convention “multiplication before addition;” 
e.g., we interpret a ⊕ b ∗ c as a ⊕ (b ∗ c). 

The reader may verify that R, C, Q and F2 each form a field according to this definition under 
conventional addition and multiplication. 

Exercise 5. Show that for any element a ∈ F, a ∗ 0 = 0.  

7.4.1 Prime fields 

A fundamental example of a finite (Galois) field is the set Fp of mod-p remainders, where p is 
a given prime number. Here, as in Zp, the set of elements is Rp = {0, 1, · · · , p  − 1}, and  the  
operation ⊕ is mod-p addition. The multiplicative operation ∗ is mod-p multiplication; i.e., 
multiply integers as usual and then take the remainder after division by p. 

Theorem 7.5 (Prime fields) For every prime p, the set Rp = {0, 1, · · · , p − 1} forms a field 
(denoted by Fp) under mod-p addition and multiplication. 

Proof. We have already seen that the elements of Fp form an abelian group under addition 
modulo p, namely the cyclic group Zp. 

The associative and commutative properties of multiplication mod p follow from the corre-
sponding properties of ordinary multiplication; the distributive law follows from the correspond-
ing property for ordinary addition and multiplication. The multiplicative identity is 1. 

To see that the nonzero elements F ∗ = Fp − {0} form a group under multiplication, we use p 
Theorem 7.1. By unique factorization, the product of two nonzero integers a, b < p cannot 

∗equal 0 mod p. Therefore the nonzero elements Fp are closed under multiplication mod p. Also,  
∗for a, b, c ∈ Fp and b � = 0.  Thus  ab �= c we have a(b − c) mod  p � = ac mod p, which implies 

a ∗ b �= a ∗ c. Consequently there are no zeroes or repetitions in the set of p − 1 elements  
{a ∗ 1, a ∗ 2, . . . , a ∗ (p − 1)}, which means they must be a permutation of F ∗ .p

We next show that Fp is essentially the only field with p elements. More precisely, we show 
that all fields with p elements are isomorphic. Two fields F and G are isomorphic if there 
is an invertible function h : F → G mapping each α ∈ F into a β = h(α) ∈ G such that 
h(α ⊕ α′) =  h(α) ⊕ h(α′) and  h(α ∗ α′) =  h(α) ∗ h(α′). Less formally, F and G are isomorphic 
if there is a one-to-one correspondence F ↔ G that translates the addition and multiplication 
tables of F to those of G and vice versa. 
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Let F be  any field with a prime  p number of elements. By the field axioms, F has an additive 
identity 0 and multiplicative identity 1. Consider the additive cyclic subgroup generated by 1, 
namely S(1) = {1, 1 ⊕ 1, . . .}. By Lagrange’s theorem, the order of S(1) divides |F| = p, and  
therefore must be equal to 1 or p. But  1  ⊕ 1 �= 1, else 1 = 0, so 1 must have order p. In  other  
words, S(1) = F, and the additive group of F is isomorphic to that of Zp. We may therefore 
denote the elements of F by {0, 1, 2, . . . , p − 1}, and use mod-p addition as the addition rule. 

The only remaining question is whether this correspondence F ↔ Zp under addition extends 
to multiplication. The distributive law shows that it does: j ∗ i is the sum of j terms each equal 
to i, so  j ∗ i = (ji mod p). Therefore, in summary: 

Theorem 7.6 (Prime field uniqueness) Every field F with a prime number p of elements is 
isomorphic to Fp via the correspondence 1 ⊕ · · · ⊕ 1 ∈ F ↔ i ∈ Fp. 

i terms 

In view of this elementary isomorphism, we will denote any field with a prime number p of 
elements by Fp. 

It is important to note that the set Zn of integers mod n does not form a field if n is not prime. 
The reason is that n = ab for some positive integers a, b < n  ∈ Zn; thus  ab = 0  mod  n, so  the  
set of nonzero elements of Zn is not closed under multiplication mod n. 

However, we will see shortly that there do exist finite fields with non-prime numbers of elements 
that use other rules for addition and multiplication. 

7.4.2 The prime subfield of a finite field 

A subfield G of a field F is a subset of the field that is itself a field under the operations of F. 
For example, the real field R is a subfield of the complex field C. We now show that every finite 
field Fq has a subfield that is isomorphic to a prime field Fp. 

Let Fq be a finite field with q elements. By the field axioms, Fq has an additive identity 0 and 
a multiplicative identity 1. 

Consider the cyclic subgroup of the additive group of Fq that is generated by 1, namely 
S(1) = {1, 1 ⊕ 1, . . .}. Let  n = |S(1)|. By the cyclic group theorem, S(1) is isomorphic to Zn, 
and its elements may be denoted by {0, 1, 2, . . . , n − 1}, with mod-n addition. 

By the distributive law in Fq , the product i∗j (in Fq ) of two  nonzero elements in  S(1) is simply 
the sum of ij ones, which is an element of S(1), namely ij mod n. Since this is a product of 
nonzero elements of Fq , by the field axioms ij mod n must be nonzero for all nonzero i, j. This  
will be true if and only if n is a prime number p. 

Thus S(1) forms a subfield of Fq with a prime number p of elements. By the prime field 
theorem of the previous subsection, S(1) is isomorphic to  Fp. Thus the elements of S(1), which 
are called the integers of Fq , may be denoted by Fp = {0, 1, . . . , p  − 1}, and the addition and 
multiplication rules of Fq reduce to mod-p addition and multiplication in Fp. 

The prime p is called the characteristic of Fq . Since  the  p-fold sum of the identity 1 with itself 
is 0, the p-fold sum of every field element β ∈ Fq with itself is 0: pβ = 0.  

In summary: 

Theorem 7.7 (Prime subfields) The integers {1, 1 ⊕ 1, . . .} of any finite field Fq form a sub-
field Fp ⊆ Fq with a prime number p of elements, where p is the characteristic of Fq . 
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7.5 Polynomials 

We now consider polynomials over Fp, namely polynomials whose coefficients lie in Fp and 
for which polynomial addition and multiplication is performed in Fp. We will see that the 
factorization properties of polynomials are similar to those of the integers, and that the analogue 
to mod-n arithmetic is arithmetic modulo a polynomial f (x). 

A nonzero polynomial f (x) of degree  m over a field F is an expression of the form 

mf (x) =  f0 + f1x + f2x 2 + · · ·  + fmx , 

where fi ∈ F, 0 ≤ i ≤ m, and  fm �= 0. We say that deg f (x) =  m. The  symbol  x represents 
an indeterminate (or “placeholder”), not an element of F; i.e., two polynomials are different if 
and only if their coefficients are different3 . The nonzero polynomials of degree 0 are simply the 
nonzero field elements f0 ∈ F. There is also a special zero polynomial f (x) = 0 whose degree 
is defined by convention as deg 0 = −∞; we will explain the reason for this convention shortly. 
The set of all polynomials over F in an indeterminate x is denoted by F[x]. 

The rules for adding, subtracting or multiplying polynomials are the same over a general field 
F as over the real field R, except that coefficient operations are in F. In particular, addition and 
subtraction are performed componentwise. For multiplication, the coefficients of a polynomial 
product f (x) =  h(x)g(x) are determined by convolution: 

i 

fi = hj gi−j . 
j=0 

If two nonzero polynomials are multiplied, then their degrees add; i.e., deg(h(x)g(x)) = 
deg h(x) + deg  g(x). The convention deg 0 = −∞ ensures that this formula continues to hold 
when h(x) or  g(x) is the zero polynomial. 

The set F[x] has many of the properties of a field. It is evidently an abelian group under 
addition whose identity is the zero polynomial 0 ∈ F[x]. It is closed under multiplication, which 
is both associative and commutative and which distributes over addition. It has a multiplicative 
identity 1 ∈ F[x], and the cancellation law holds. 

However, in general we cannot divide evenly by a nonzero polynomial, since a polynomial f (x) 
with deg f (x) > 0 has no multiplicative inverse. Therefore F[x] is a  ring, 4 not a field, like the 
ring of integers Z. We now develop a series of properties of F[x] that resemble those of Z. 

3Over the real field R, a polynomial f (x) is sometimes regarded as a function f : R → R. This alternative 
viewpoint makes little difference in the real case, since two polynomials over R are different if and only if the 
corresponding polynomial functions are different. However, over finite fields it is important to maintain the 
distinction. For example, over F2 the polynomial functions x and x 2 both map 0 → 0, 1 → 1, yet the polynomials 
x and x 2 are different. 

4The axioms of a ring are similar to those for a field, except that there is no multiplicative inverse. For example, 
Z and Zn (for n not a prime) are rings. In fact, Z and F[x] are integer domains, which are the nicest kind of 
rings. An integer domain is a ring with commutative multiplication and a multiplicative identity 1 such that the 
nonzero elements are closed under multiplication. 

Exercise 6. Show that an integer domain with a finite number of elements must be a finite field. [Hint: 
consider its cyclic multiplicative subgroups.] 
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7.5.1 Definitions 

A polynomial g(x) is said to be a  divisor of an polynomial f(x) if  f(x) is a polynomial multiple 
of g(x); i.e., f(x) =  q(x)g(x) for some polynomial q(x). Thus all polynomials are trivially 
divisors of the zero polynomial 0. 

The polynomials that have polynomial inverses are the nonzero degree-0 polynomials β ∈ F ∗ = 
F − {0}. These are called the units of F[x]. If u(x) is a unit polynomial and g(x) is a divisor of 
f(x), then u(x)g(x) is a divisor of f(x) and  g(x) is a divisor of u(x)f(x). Thus the factorization 
of a polynomial can be unique only up to a unit polynomial u(x), and u(x)f(x) has the same 
divisors as f(x). 

A monic polynomial is a nonzero polynomial f(x) of degree  m with high-order coefficient fm 

equal to 1; i.e., f(x) =  f0 + f1x + f2x
2 + · · ·  + xm . Every nonzero polynomial g(x) may  be  

written as the product g(x) =  gmf(x) of a monic polynomial f(x) of the same degree with a unit 
polynomial u(x) =  gm, and the product of two monic polynomials is monic. We may therefore 
consider only factorizations of monic polynomials into products of monic polynomials. 

Every nonzero polynomial f(x) is divisible by 1 and f(x); these divisors are called trivial. A 
polynomial g(x) is said to be a  factor of a polynomial f(x) if  g(x) is monic and a nontrivial 
divisor of f(x). Thus the degree of any factor g(x) of  f(x) satisfies 1  ≤ deg g(x) < deg f(x). 

A polynomial g(x) of degree 1 or more that has no factors is called an irreducible polynomial, 
and a monic irreducible polynomial is called a prime polynomial. Our goal now is to show that 
every monic polynomial has a unique factorization into prime polynomial factors. 

7.5.2 Mod-g(x) arithmetic 

Given a monic polynomial g(x) of degree  m, every polynomial f(x) may be expressed as f(x) =  
q(x)g(x)+r(x) for some polynomial remainder r(x) such that deg  r(x) < m and some polynomial 
quotient q(x). This may be proved by the Euclidean long division algorithm of high school, with 
component operations in F; i.e., divide g(x) into  f(x) by long division, high-degree terms first, 
stopping when the degree of the remainder is less than that of g(x). The following exercise 
shows that the resulting quotient q(x) and remainder r(x) are unique. 

Exercise 7 (Euclidean division algorithm). 

(a) For the set F[x] of polynomials over any field F, show that the distributive law holds: 
(f1(x) +  f2(x))h(x) =  f1(x)h(x) +  f2(x)h(x). 

(b) Use the distributive law to show that for any given f(x) and  g(x) in  F[x], there is a unique 
q(x) and  r(x) with deg  r(x) < deg g(x) such that  f(x) =  q(x)g(x) +  r(x). 

The remainder polynomial r(x), denoted by r(x) =  f(x) mod  g(x), is the more important 
part of this decomposition. The set of all possible remainder polynomials is the set RF,m = 
{r0 + r1x + · · ·  + rm−1x

m−1 | rj ∈ F, 0 ≤ j ≤ m − 1}, whose size is |RF,m| = |F|m . Evidently 
g(x) is a divisor of f(x) if and only if f(x) mod  g(x) = 0.  

Remainder arithmetic using the remainder set RF,m is called “mod-g(x) arithmetic.” The 
rules for mod-g(x) arithmetic follow from the rules for polynomial arithmetic as follows. Let 
r(x) =  f(x) mod  g(x) and  s(x) =  h(x) mod  g(x); then, as polynomials, r(x) =  f(x) − q(x)g(x) 
and s(x) =  h(x) − t(x)g(x) for some quotient polynomials q(x) and  t(x). Then 
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f(x) +  h(x) =  r(x) +  s(x) − (q(x) +  t(x))g(x); 
f(x)h(x) =  r(x)s(x) − (q(x)s(x) +  t(x)r(x))g(x) +  q(x)t(x)g 2(x). 

Hence (f(x) +  h(x)) mod g(x) = (r(x) +  s(x)) mod g(x) and  f(x)h(x) mod  g(x) =  r(x)s(x) 
mod g(x). In other words, the mod-g(x) remainder of the sum or product of two polynomials is 
equal to the mod-g(x) remainder of the sum or product of their mod-g(x) remainders. 

The mod-g(x) addition and multiplication rules are therefore defined as follows: 

r(x) ⊕ s(x) = (r(x) +  s(x)) mod g(x); 
r(x) ∗ s(x) = (r(x)s(x)) mod g(x), 

where “r(x)” and “s(x)” denote elements of the remainder set RF,m on the left and the corre-
sponding ordinary polynomials on the right. This makes mod-g(x) arithmetic consistent with 
ordinary polynomial arithmetic in the sense of the previous paragraph. 

Note that the mod-g(x) addition rule is just componentwise addition of coefficients in F. In  this  
sense the additive groups of RF,m and of the vector space Fm of m-tuples over F are isomorphic. 

7.5.3 Unique factorization 

By definition, every monic polynomial f(x) is either irreducible or can be factored into a product 
of monic polynomial factors, each of lower degree. In turn, if a factor is not irreducible, it can 
be factored further. Since factor degrees are decreasing but bounded below by 1, we must 
eventually arrive at a product of monic irreducible (prime) polynomials. The following theorem 
shows that there is only one such set of prime polynomial factors, regardless of the order in 
which the polynomial is factored. 

Theorem 7.8 (Unique factorization of polynomials) Over any field F, every monic poly-
nomial f(x) ∈ F[x] of degree m ≥ 1 may be written in the form 

k 

f(x) =  ai(x), 
i=1 

where each ai(x), 1 ≤ i ≤ k, is a prime polynomial in F[x]. This factorization is unique, up to 
the order of the factors. 

Proof.  We have already  shown that  f(x) may be factored in this way, so we need only prove 
uniqueness. Thus assume hypothetically that the theorem is false and let m be the smallest 
degree such that there exists a degree-m monic polynomial f(x) with more than one such 
factorization, 

f(x) =  a1(x) · · · ak (x) =  b1(x) · · · bj (x); j, k ≥ 1, (7.2) 

where a1(x), . . . , ak (x) and  b1(x), . . . , bj (x) are prime polynomials. We will show that this implies 
a polynomial f ′(x) with degree less than m with non-unique factorization, and this contradiction 
will prove the theorem. Now a1(x) cannot appear on the right side of (7.2), else it could be 
factored out for an immediate contradiction. Similarly, b1(x) cannot appear on the left. Without 
loss of generality, assume deg b1(x) ≤ deg a1(x). By the Euclidean division algorithm, a1(x) =  
q(x)b1(x) +  r(x). Since a1(x) is irreducible, r(x) �= 0  and  0  ≤ deg r(x) < deg b1(x) ≤ deg a1(x). 
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Thus r(x) has a prime factorization r(x) =  βr1(x) · · · rn(x), where β is the high-order coefficient 
of r(x), and b1(x) is not a divisor of any of the ri(x), since it has greater degree. Substituting 
into (7.2), we have 

(q(x)b1(x) +  βr1(x) · · · rn(x))a2(x) · · · ak(x) =  b1(x) · · · bj (x), 

or, defining f ′(x) =  r1(x) · · · rn(x)a2(x) · · · ak (x) and rearranging terms, 

f ′(x) =  r1(x) · · · rn(x)a2(x) · · · ak (x) =  β−1b1(x)(b2(x) · · · bj (x) − q(x)a2(x) · · · ak (x)). 

Now f ′(x) is monic, because it is a product of monic polynomials; it has degree less than f(x), 
since deg r(x) < deg a1(x); and it has two different factorizations, with b1(x) a factor in one but 
not a divisor of any of the factors in the other; contradiction. 

Exercise 8. Following this proof, prove unique factorization for the integers Z. 

7.5.4 Enumerating prime polynomials 

The prime polynomials in F[x] are analogous to the prime numbers in Z. One way to enumerate 
the prime polynomials is to use an analogue of the sieve of Eratosthenes. For integers, this 
method goes as follows: Start with a list of all integers greater than 1. The first integer on the 
list is 2, which is prime. Erase all multiples of 2 (even integers). The next remaining integer 
is 3, which must be the next prime. Erase all multiples of 3. The next remaining integer is 5, 
which must be the next prime. Erase all multiples of 5. And so forth. 

Similarly, to find the prime polynomials in F2[x], for example, first list all polynomials of degree 
1 or more in  F2[x] in order of degree. (Note that all nonzero polynomials in F2[x] are  monic.)  
No degree-1 polynomial can have a factor, so the two degree-1 polynomials, x and x + 1,  are  
both prime. Next, erase all degree-2 multiples of x and x + 1, namely 

x 2 = x ∗ x; 
x 2 + x = x ∗ (x + 1);  

x 2 +  1 = (x + 1)  ∗ (x + 1)  

from the list of four degree-2 polynomials. This leaves one prime degree-2 polynomial, namely 
x2 + x + 1. Next, erase all degree-3 multiples of x, x + 1,  and  x2 + x + 1 from the list of eight 
degree-3 polynomials, namely the six polynomials 

x 3 = x ∗ x ∗ x; 
2 x 3 + x = (x + 1)  ∗ x ∗ x; 

x 3 + x = (x + 1)  ∗ (x + 1)  ∗ x; 
x 3 + x 2 + x = x ∗ (x 2 + x + 1);  

x 3 + 1  =  (x + 1)  ∗ (x 2 + x + 1);  

x 3 + x 2 + x + 1  =  (x + 1)  ∗ (x + 1)  ∗ (x + 1). 

The remaining two polynomials, namely x3 + x2 + 1 and x3 + x + 1, must therefore be prime. 

Exercise 9. Find all prime polynomials in F2[x] of degrees 4 and 5. [Hint: There are three 
prime polynomials in F2[x] of degree 4 and six of degree 5.] 

Continuing in this way, we may list all prime polynomials in F2[x] up to any desired degree. 
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It turns out that the number N(m) of prime polynomials of F2[x] of degree  m is N(m) =  
2, 1, 2, 3, 6, 9, 18, 30, 56, 99, . . .  for m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .. (In Section 7.9 we will give a 
simpler method to compute N(m), and will show that N(m) > 0 for all m.) 

A similar sieve algorithm may be used to find the prime polynomials in F[x] over any finite 
field F. The algorithm starts with a listing of the monic polynomials ordered by degree, and 
successively erases the multiples of lower-degree prime polynomials. 

7.6 A construction of a field with pm elements 

We now show how to construct a field with pm elements for any prime integer p and positive 
integer m ≥ 1. Its elements will be the set RF,m of remainder polynomials of degree less than m, 
and multiplication will be defined modulo an irreducible polynomial g(x) of degree  m. We will 
subsequently show that that every finite field is isomorphic to a finite field that is constructed 
in this way. 

The construction assumes the existence of a prime polynomial g(x) ∈ Fp[x] of degree  m. The  
proof that such a polynomial exists for all prime p and m ≥ 1 will be deferred until later. The 
field that we construct will be denoted by Fg(x). 

The set of elements of Fg(x) will be taken to be the mod-g(x) remainder set RFp,m = {r0 + 
mr1x + · · · + rm−1x

m−1 | rj ∈ Fp, 0 ≤ j ≤ m − 1}, whose size is |RFp,m| = p . 

The addition and multiplication rules will be taken to be those of mod-g(x) arithmetic. We 
must show that the axioms of a field are satisfied with these definitions. 

The associative, commutative and distributive laws for mod-g(x) arithmetic follow from the 
corresponding laws for ordinary polynomial arithmetic. 

Mod-g(x) addition of two remainder polynomials in Fg(x) yields a remainder polynomial of 
degree < m  in Fg(x). Fg(x) evidently forms an abelian group under mod-g(x) addition. (As 
already mentioned, this group is isomorphic to the additive group of (Fp)m.) 

Mod-g(x) multiplication of two remainder polynomials r(x), s(x) yields the remainder polyno-
mial t(x) =  r(x)s(x) mod  g(x). The following exercise shows that the nonzero elements of Fg(x) 

form an abelian group under mod-g(x) multiplication: 

Exercise 10. Let  g(x) be a prime  polynomial of degree  m, and  let  r(x), s(x), t(x) be polyno-
mials in Fg(x). 

(a) Prove the distributive law, i.e., (r(x)+  s(x)) ∗t(x) =  r(x) ∗t(x)+  s(x) ∗t(x). [Hint: Express 
each product as a remainder using the Euclidean division algorithm.] 

=  0, show that  r(x) ∗ s(x) � = t(x).(b) For r(x) � = r(x) ∗ t(x) if  s(x) �
(c) For r(x) �= 0, show that as s(x) runs through all nonzero polynomials in Fg(x), the product 

r(x) ∗ s(x) also runs through all nonzero polynomials in Fg(x). 

(d) Using part (c) and Theorem 7.1, show that the nonzero elements of Fg(x) form an abelian 
group under mod-g(x) multiplication. 

Since we have verified the three field axioms, we have proved: 

Theorem 7.9 (Construction of Fg(x)) If g(x) is an prime polynomial of degree m over a 
prime field Fp, then the set of remainder polynomials RFp,m with mod-g(x) arithmetic forms a 
finite field Fg(x) with pm elements. 
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Example 1. Let us construct a finite field with 22 = 4 elements using the prime degree-2 
polynomial g(x) =  x2 + x + 1  ∈ F2[x]. 

There are four remainder polynomials mod x2 + x + 1, namely {0, 1, x, x  + 1}. Addition is 
componentwise mod 2. For multiplication, note that x∗x = x+1 since x2 mod (x2 +x+1) = x+1. 
Also x ∗ x ∗ x = x ∗ (x +  1) = 1  since  x3 mod (x2 + x + 1) = 1. The three nonzero elements 
{1, x, x + 1} thus form a cyclic group under mod-g(x) multiplication, which verifies the second 
field axiom for this example. 

The complete mod-g(x) addition and multiplication tables are as follows: 

⊕ 0 1 x x + 1  ∗ 0 1 x x + 1  
0 0 1 x x + 1  0 0 0 0 0 
1 1 0 x + 1  x 1 0 1 x x + 1  
x x x + 1  0  1  x 0 x x + 1  1  

x + 1  x + 1  x 1 0 1 +  x 0 x + 1  1  x 

∗7.7 The multiplicative group of Fq is cyclic 

In this section we consider an arbitrary finite field Fq with q elements. By the second field axiom, 
the set F ∗ of all q − 1 nonzero elements must form a finite abelian group under multiplication. q 
In this section we will show that this group is actually cyclic. 

∗We start by showing that every element of Fq is a root of the polynomial xq−1 − 1 ∈ Fq [x]. 
Thus we first need to discuss roots of polynomials over arbitrary fields. 

7.7.1 Roots of polynomials 

Let F[x] be the set of polynomials over an arbitrary field F. If  f(x) ∈ F[x] has a degree-1 factor 
x − α for some α ∈ F, then  α is called a root of f(x). 

Since any f(x) may be uniquely expressed as f(x) =  q(x)(x−α)+β for some quotient q(x) and  
some β ∈ F (i.e., for some remainder r(x) =  β of degree less than 1), it follows that f(α) =  β. 
Therefore α is  a root of  f(x) if and only if f(α) = 0 —  i.e., if and only if α is  a root of the  
polynomial equation f(x) = 0.  

By degree additivity, the degree of a polynomial f(x) is equal to the sum of the degrees of 
its prime factors, which are unique by unique factorization. Therefore a polynomial of degree 
m can have at most m degree-1 factors. This yields what is sometimes called the fundamental 
theorem of algebra: 

Theorem 7.10 (Fundamental theorem of algebra) Over any field F, a monic polynomial 
f(x) ∈ F[x] of degree m can have no more than m roots in F. If it does have m roots {β1, . . . , βm}, 
then the unique factorization of f(x) is f(x) = (x − β1) · · · (x − βm). 

Since the polynomial xn − 1 can have at most n roots in F, we have an important  corollary:  

Theorem 7.11 (Cyclic multiplicative subgroups) In any field F, the multiplicative group 
∗ F of nonzero elements has at most one cyclic subgroup of any given order n. If such a subgroup 

exists, then its elements {1, β, . . . , βn−1} satisfy 

x n − 1 = (x − 1)(x − β) · · · (x − βn−1). 
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For example, the complex multiplicative group C ∗ has precisely one cyclic subgroup of each 
finite size n, consisting of the n complex nth roots of unity. The real multiplicative group R ∗ 

has cyclic subgroups of size 1 ({1}) and  2 ({±1}), but none of any larger size. 

Exercise 11. For 1 ≤ j ≤ n, the  jth elementary symmetric function σj (S) of a set  S of n 
nelements of a field F is the sum of all products of j distinct elements of S. In  particular,  j 

σ1(S) is the sum of all elements of S, and  σn(S) is the product of all elements of S. 
∗(a) Show that if S = {1, β, . . . , βn−1} is a cyclic subgroup of F , then  σj (S) = 0 for 1 ≤ j ≤ n−1 

and σn(S) = (−1)n+1. In  particular,  

n−1 n−1 � � 
βj = 0, if n >  1; βj = (−1)n+1 . 

j=0 j=0 

Verify for S = {±1,±i} (the four complex 4th roots of unity). 

(b) Prove that for any odd prime integer p, 

(p − 1)! = 1 · 2 · 3 · · ·  (p − 1) = −1 mod  p. 

Verify for p = 3, 5 and  7.  

7.7.2 Factoring xq − x over Fq 

∗ ∗For any β ∈ Fq , consider the cyclic subgroup S(β) =  {1, β, β2, β3 , . . .} of F generated by β.q 
The size |S(β)| of this subgroup is called the multiplicative order of β. 

By the cyclic group theorem, β|S(β)| = 1, and by Lagrange’s theorem, |S(β)| must divide 
∗ ∗|F | = q − 1. It follows that βq−1 = 1  for  all  β ∈ Fq .q 

∗In other words, every β ∈ Fq is a root of the polynomial equation xq−1 = 1, or equivalently 
of the polynomial xq−1 − 1 ∈ Fq [x]. By the polynomial roots theorem, xq−1 − 1 can have at 
most q − 1 roots  in  Fq , so these are all the roots of xq−1 − 1. Thus xq−1 − 1 factors into the 

∗product of the degree-1 polynomials x− β for all β ∈ Fq . Moreover, since 0 ∈ Fq is  a root of the  
polynomial x and x(xq−1 − 1) = xq − x, the polynomial xq − x factors into the product of the 
degree-1 polynomials x − β for all β ∈ Fq . 

To summarize: 

Theorem 7.12 In a finite field Fq with q elements, every nonzero field element β ∈ Fq satisfies 
βq−1 = 1  and has a multiplicative order |S(β)| that divides q − 1. The nonzero elements of Fq 

are the q − 1 distinct roots of the polynomial xq−1 − 1 ∈ Fq [x]; i.e., 

xq−1 − 1 =  (x − β). (7.3) 
β∈F∗ 

q 

The elements of Fq are the q distinct roots of the polynomial xq − x ∈ Fq [x]; i.e., 

xq − x = (x − β). (7.4) 
β∈Fq 

Exercise 12. 

(a) Verify (7.3) for the prime field F5. 

(b) Verify (7.3) for the field F4 that was constructed in Example 1. [Hint: use a symbol other 
than x for the indeterminate in (7.3).] 
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7.7.3 Every finite field has a primitive element 

A primitive element of a finite field Fq is an element α whose multiplicative order |S(α)| equals 
−2q − 1. If α is a primitive element, then the cyclic group {1, α, α2, . . . , αq } is a set of q − 1 

distinct nonzero elements of Fq, which therefore must be all the nonzero elements. Thus if we can 
show that Fq has at least one primitive element, we will have shown that its nonzero elements 
∗ Fq form a cyclic group under multiplication of size q − 1. 

By Lagrange’s theorem, the multiplicative order |S(β)| of each nonzero element β ∈ F ∗ dividesq ∗ q − 1. Therefore the size d of each cyclic subgroup of Fq divides q − 1. As we have seen, the 
number of elements in a cyclic group or subgroup of size d that have order d is the Euler number 

∗φ(d). Since by the cyclic subgroups theorem Fq has at most one cyclic subgroup of each size d, 
the number of elements in F ∗ with order less than q − 1 is at most  q 

φ(d). 
d: d|(q−1), d�=q−1 

But since the Euler numbers satisfy the relationship (7.1), which in this case is 

q − 1 =  φ(d), 
d: d|(q−1) 

∗we conclude that there must be at least φ(q − 1) elements of Fq with order q − 1. Indeed, since 
∗ F has at most φ(q − 1) elements of order q − 1, all inequalities must be satisfied with equality; q ∗i.e., Fq has precisely φ(d) elements of order  d for each divisor d of q − 1. 

We saw in Exercise 3 that φ(q − 1) ≥ 1, so a primitive element α of order q − 1 exists. Thus 
∗ Fq is cyclic and has one cyclic subgroup of each order d that divides q − 1. This proves the 

following theorem: 

Theorem 7.13 (Primitive elements) Given any field Fq with q elements, the nonzero ele-
−2 ∗ments of Fq form a multiplicative cyclic group F ∗ = {1, α, α2, . . . , αq }. Consequently Fq hasq 

φ(d) ≥ 1 elements of multiplicative order d for every d that divides q − 1, and no elements of 
∗any other order. In particular, Fq has φ(q − 1) ≥ 1 primitive elements. 

−2Henceforth we will usually write the elements of a finite field Fq as {0, 1, α, α2, . . . , αq }, where  
α denotes a primitive element. For Fg(x), denoting a field element β as a power of  α rather than 
as a remainder polynomial helps to avoid confusion when we consider polynomials in β. 

Example 2. The prime field F5 has φ(1) = 1 element of order 1 (the element 1), φ(2) = 1 
element of order 2 (namely 4 = -1), and φ(4) = 2 primitive elements of order 4 (namely, 2 and 
3). We can therefore write F5 = {0, 1, 2, 22 , 23}, since  22 = 4  and  23 = 3  mod  5.  

Example 3. A  field  F16 = {0, 1, α, . . . , α14} with 16 elements has 

• φ(1) = 1 element of order 1 (the element 1); 

• φ(3)  =  2 elements of order  3 (α5 and α10); 

• φ(5)  =  4 elements of order  5 (α3, α6, α9, α12), and 

• φ(15) = 8 primitive elements of order 15 (α, α2, α4, α7, α8, α11, α13, α14). 
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The “logarithmic” representation of the nonzero elements of Fq as distinct powers of a primitive 
element α is obviously highly convenient for multiplication and division. Multiplication in Fq is 
often carried out by using such a “log table” to convert a polynomial f(x) ∈ Fq to the exponent 
i such that f(x) =  αi, and then using an inverse “antilog table” to convert back after adding or 
subtracting exponents. (Note that the zero element can be included in this scheme if we define 
0 =  α−∞.) 

7.8 Every finite field is isomorphic to a field Fg(x) 

We now wish to show that every finite field Fq is isomorphic to a field Fg(x) of the type that 
we have previously constructed. In particular, this will show that the number of elements of a 
finite field must be q = pm, a prime power. 

The development relies on the properties of minimal polynomials, which are the factors that 
appear in the unique factorization of xq − x over the prime subfield Fp of Fq . 

7.8.1 Factoring xq − x into minimal polynomials over Fp 

Again, consider any field Fq with q elements. We have seen in Theorem 7.12 that the polynomial 
xq − x ∈ Fq [x] factors completely into q deqree-1 factors x − β ∈ Fq [x], β  ∈ Fq . 

We have also seen that if Fq has characteristic p, then  Fq has a prime subfield Fp with p 
elements. The prime subfield Fp contains the integers of Fq , which include {0,±1}. Therefore 
we may regard xq − x alternatively as a polynomial in Fp[x]. 

By unique factorization, xq − x factors over Fp into a unique product of prime polynomials 
gi(x) ∈ Fp[x]: 

xq − x = gi(x). (7.5) 
i 

Since each coefficient of gi(x) is an element  of  Fp ⊆ Fq ,  it is also an element  of  Fq , so  gi(x) is  
also a monic polynomial in Fq [x]. We therefore have the following two factorizations of xq − x 
in Fq [x]: 

xq − x = (x − β) =  gi(x). (7.6) 
β∈Fq i 

Since the first factorization is the unique prime factorization, it follows that each monic polyno-
mial gi(x) of degree greater than 1 must be reducible over Fq , and must factor into a product 
of degree-1 monic polynomials; i.e., 

deg gi(x) 

gi(x) =  (x − βij ). (7.7) 
j=1 

The prime polynomials gi(x) are called the minimal polynomials of Fq . Since each β ∈ Fq 

appears exactly once on the left side of (7.6), it also appears as a factor in exactly one minimal 
polynomial in (7.7). Thus the elements of Fq are partitioned into disjoint sets {βi1, . . . , βik}
where k = deg  gi(x), and each β ∈ Fq is a root of exactly one minimal polynomial of Fq , called 
the minimal polynomial of β. 

The key property of the minimal polynomial of β is the following: 
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Lemma 7.14 Let g(x) be the minimal polynomial of any given β ∈ Fq . Then g(x) is the monic 
polynomial of least degree in Fp[x] such that g(β) = 0. Moreover, for any f(x) ∈ Fp[x], f(β) = 0  
if and only if g(x) divides f(x). 

Proof: Let h(x) ∈ Fp[x] be a monic polynomial of least degree such that h(β) = 0. Using 
the Euclidean division algorithm, g(x) =  q(x)h(x) +  r(x) where deg r(x) < deg h(x). Since 
h(β) =  g(β) = 0, we must have r(β) = 0. By the smallest degree property of h(x), this implies 
that r(x) = 0,  so  h(x) divides g(x). But since g(x) is irreducible, h(x) cannot have degree less 
than g(x); i.e., deg h(x) = deg  g(x). Moreover, since both h(x) and  g(x) are monic, this implies 
that h(x) =  g(x). Thus g(x) is the monic polynomial of least degree in Fp[x] such that  g(β) = 0.  

Now let f(x) be any polynomial in Fp[x] that satisfies f(β) = 0. By Euclidean division, f(x) =  
q(x)g(x) +  r(x) with deg  r(x) < deg g(x). Thus r(β) =  f(β) = 0. Since deg r(x) < deg g(x), 
r(β) = 0 if and only if r(x) = 0;  i.e., if and only if g(x) divides f(x). 

Example 1 (cont.). Again consider the field F4 of Example 1, whose elements we now write 
as {0, 1, α, α2}, where  α may be taken  as  x or x + 1. This field has characteristic 2. The prime 
factorization of the binary polynomial x4 − x = x4 + x ∈ F2[x] is  

x 4 + x = x(x + 1)(x 2 + x + 1), 

so the minimal polynomials of F4 are x, x + 1 and x2 + x + 1. The elements 0 and 1 ∈ F4 are 
the roots of x and x + 1, respectively. From (7.7), the other two elements of F4, namely α and 
α2, must be roots  of  x2 + x + 1  ∈ F2[x]. We verify that 

x 2 + x + 1  =  (x + α)(x + α2) 

since α + α2 = 1 and α ∗ α2 = α3 = 1.  

7.8.2 Valuation maps, minimal polynomials and subfields 

Given a field Fq with prime subfield Fp, we now consider evaluating a nonzero polynomial 
f(x) =  fix

i ∈ Fp[x] at an element  β ∈ Fq to give a value i 

deg f (x) 

f(β) =  fiβ
i 

i=0 

in Fq , where  fi is taken as an element of Fq for the purposes of this evaluation. The value of the 
zero polynomial at any β is 0. 

The value f(β) depends on both the polynomial f(x) and  the field element  β ∈ Fq . Rather than 
regarding f(β) as a function of β, as the notation suggests, we will regard f(β) as a function of 
the polynomial f(x) ∈ Fp[x] for a fixed β. In other words, we consider the map mβ : Fp[x] → Fq 

that is defined by mβ (f(x)) = f(β). 

The set of values mβ (Fp[x]) of this map as f(x) ranges over polynomials in Fp[x] is by definition 
the subset of elements Gβ ⊆ Fq that can be expressed as linear combinations over Fp of powers of 
β. We will show that Gβ forms a subfield of Fq that is isomorphic to the polynomial remainder 
field Fg(x), where  g(x) is the minimal polynomial of β, namely the monic polynomial of least 
degree such that g(β) = 0.  
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We observe that the map mβ : Fp[x] → Fq preserves addition and multiplication; i.e., 
mβ (f1(x) +  f2(x)) = mβ (f1(x)) + mβ (f2(x)) since both sides equal f1(β) +  f2(β), and 
mβ (f1(x)f2(x)) = mβ (f1(x))mβ (f2(x)) since both sides equal f1(β)f2(β). 

We can now prove the desired isomorphism between the fields Fg(x) and Gβ : 

Theorem 7.15 (Subfields generated by β ∈ Fq ) For any β ∈ Fq , let  g(x) be the minimal 
polynomial of β. Then the set of all linear combinations Gβ = {f(β) =  fiβ

i, f(x) ∈ Fp[x]}i 
over Fp of powers of β is equal to the set {r(β), r(x) ∈ RFp,m} of values of remainder polynomials 
r(x) ∈ RFp,m, and  Gβ is a field which is isomorphic to the field Fg(x) under the correspondence 
r(β) ∈ Gβ ↔ r(x) ∈ RFp,m. 

Proof. We first verify that the correspondence mβ : RFp,m → Gβ is one-to-one (invertible). 
First, if f(β) is any element of Gβ , then by Euclidean division we can write f(x) =  q(x)g(x)+r(x) 
where r(x) ∈ RFp,m, and  then  f(β) =  q(β)g(β)+r(β) =  r(β), so f(β) =  r(β) for some remainder 
polynomial r(x). Thus mβ (RFp,m) =  mβ (Fp[x]) = Gβ . On the other hand, no two remainder 
polynomials r(x), s(x) with degrees less than m can evaluate to the same element of Gβ , because 
if r(β) =  s(β), then r(x) − s(x) is a nonzero polynomial of degree less than g(x) that evaluates  
to 0, contradiction. 

Now, as we have already seen, mβ (r(x) +  s(x)) = mβ (r(x)) + mβ (s(x)) and mβ (r(x)s(x)) = 
mβ (r(x))mβ (s(x)), which verifies that this correspondence is an isomorphism. 

We remark that Gβ may be viewed as the smallest subfield of Fq containing the element β, 
because any subfield containing β must also contain all powers of β and all linear combinations 
of powers over Fp. 

7.8.3 Isomorphism theorems 

We have shown that every finite field Fq contains a primitive element α. In this case, the subfield 
Gα consisting of all linear combinations over Fp of powers of α must evidently be the whole field 
Fq . Thus we obtain our main theorem: 

Theorem 7.16 (Every finite field is isomorphic to a field Fg(x)) Every finite field Fq of 
characteristic p with q elements is isomorphic to a polynomial remainder field Fg(x), where g(x) 
is a prime polynomial in Fp[x] of degree m. Hence  q = pm for some positive integer m. 

Exercise 13. For which integers q, 1 ≤ q ≤ 12, does a finite field Fq exist? 

Finally, we wish to show that all fields with pm elements are isomorphic. The following lemma 
shows that every prime polynomial g(x) of degree  m (we are still assuming that there exists at 
least one) is a minimal polynomial of every field with pm elements: 

Lemma 7.17 Every prime polynomial g(x) ∈ Fp[x] of degree m divides xpm − x. 

Proof. If  g(x) is a prime polynomial in Fp[x] of degree  m, then the set RFp,m with mod-g(x) 
arithmetic forms a field Fg(x) with pm elements. The remainder polynomial x ∈ RFp,m is a field 
element β ∈ Fg(x). Evidently g(β) = 0,  but  r(β) �= 0 if  deg  r(x) < m; therefore g(x) is the  

m−1minimal polynomial of β. Since  βp = 1,  β is  a root of  xpm−1 − 1. This implies that g(x) 
m

divides xpm−1 − 1, and thus also xp − x. 
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Consequently every field of size pm includes m elements whose minimal polynomial is g(x). 
Therefore by the same construction as above, we can prove: 

Theorem 7.18 (All finite fields of the same size are isomorphic) For any prime poly-
nomial g(x) ∈ Fp[x] of degree m, every field of pm elements is isomorphic to the polynomial 
remainder field Fg(x). 

m 
7.8.4 More on the factorization of xp − x 

We can now obtain further information on the factorization of xq −x. In view of Theorem 7.16, 
mwe now set q = p . 

We first show that the set of roots of a minimal polynomial gi(x) ∈ Fp[x] is closed under the 
operation of taking the pth power. This follows from the curious but important fact that over a 
field F of characteristic p, taking the pth power is a linear operation. For example, when p = 2,  
squaring is linear because 

(α + β)2 = α2 + αβ + αβ + β2 = α2 + β2 . 

More generally, over any field F, 

p � � 

(α + β)p = 
p

αj βp−j ,
j

j=0 

p pwhere αj βp−j denotes the sum of terms equal to αj βp−j . If  F has characteristic p, then  jj � � 
pthe integer j = p!/(j!)((n − j)!) may be reduced mod p. Now  p! contains a factor of p, but 

pfor 1 ≤ j ≤ p − 1, j! and  (n − j)! do not contain a factor of p. Therefore j = 0  mod  p for 
1 ≤ j ≤ p − 1, and 

(α + β)p = αp + βp. 

By taking the pth power n times, we may extend this result as follows: 

Lemma 7.19 (Linearity of taking the pnth power) Over any field F of characteristic p, 
for any n ≥ 1, taking the pnth power is linear; i.e., 

(α + β)pn n n 
= αp + βp . 

Note that if F has q = pm elements, then βpm 
= β for all β ∈ F, so this lemma becomes 

repetitive for n ≥ m. 
mExercise 14. Using this lemma, prove that if f (x) =  fix

i, then  i=0 

n m)pn n 
+ f p

n 
xpn 

+ f p
n n n 

xmpn 
f p (x) = (f0 + f1x + f2x 2 + · · · + fmx = f p 2 x 2p + · · · + f p .0 1 m 

This result yields a useful test for whether a polynomial f (x) ∈ F[x] is in  Fp[x] or not,  and  a  
useful formula in case it is: 
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Lemma 7.20 (Prime subfield polynomials) For any field F of characteristic p and any 
f(x) ∈ F[x], fp(x) =  f(xp) if and only if f(x) ∈ Fp[x]; i.e., if and only if all coefficients fi 

are in the prime subfield Fp ⊆ F. 

Proof. By Exercise 14, we have 

xnpfp(x) = (f0 + f1x + f2x 2 + · · · + fnx n)p = fp + f1 
pxp + f2 

px 2p + · · · + fp .0 n 

Now the elements of F that are in Fp are precisely the p roots of the polynomial xp − x; thus  
βp = β if and only if β ∈ Fp. Thus the right side of this equation simplifies to f(xp) if and  only  
if fi ∈ Fp for all i. 

Exercise 15. Prove that a positive integer n is prime if and only if (x − a)n = xn − a mod n 
5for every integer a that is relatively prime to n. 

Using Lemma 7.20, we now show that the roots of a minimal polynomial are a cyclotomic coset 
of the form {β, βp, βp2 

, . . .}: 

Theorem 7.21 (Roots of minimal polynomials) Let g(x) be a minimal polynomial of a fi-
n−1

nite field F with pm elements. Then the roots of g(x) are a set of the form {β, βp, βp2 
, . . . , βp }, 

where n is a divisor of m. Moreover, g(x) divides xpn − x. 

Proof. Let  β be any root of g(x). Since g(x) ∈ Fp[x], Lemma 7.20 shows that g(xp) =  gp(x). 
3 i

Therefore g(βp) =  gp(β) = 0.  Thus  βp is  also  a root of  g(x). Iterating, βp2 
, βp , . . . , βp , . . .  are 

all roots of g(x). Because F is finite, these roots cannot all be distinct. Therefore let n be the 
= βpj+k

smallest integer such that βpn 
= β. Thus  βpj �= β for 1 ≤ j <  n. This implies that βpj �

n−1
for 0 ≤ j <  n, 1  ≤ k <  n; i.e., all elements of the set {β, βp, βp2 

, . . . , βp } are distinct. Thus 
2 m 

β, βp, βp , . . .  is a cyclic sequence and βpj 
= β if and only if n is a divisor of j. Since  βp = β, 

we see that n must divide m. 

Finally, we show that these roots are all of the roots of g(x); i.e., deg g(x) =  n and 

n−1 

g(x) =  (x − βpi 
). 

i=0 

The right side of this equation is a monic polynomial h(x) ∈ F[x] of degree  n. Since the roots 
of h(x) are roots of g(x), h(x) must divide g(x) in  F[x]. Now, using Lemma 7.20, we can prove 
that h(x) is actually a polynomial in Fp[x], because 

n−1 n−1 n−1 

(x − βpi 
)php(x) =  = (xp − βpi+1 

) =  (xp − βpi 
) =  h(xp), 

i=0 i=0 i=0 

where we use the linearity of taking the pth power and the fact that βpn 
= β. Therefore, since 

g(x) has no factors in Fp[x], g(x) must actually be equal to h(x). 
n

Finally, since the roots of g(x) all satisfy βpn 
= β, they are all roots of the polynomial xp −x, 

which implies that g(x) divides xpn − x. 
5This is the basis of the polynomial-time primality test of [Agrawal, Kayal and Saxena, 2002]. 
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This theorem has some important implications. First, the degree n of a minimal polynomial 
g(x) of a finite field F with pm elements must be a divisor of m. Second, the subfield Gβ of F 

m
generated by a root β of g(x) must have  pn elements. Third, xpn − x divides xp − x, since  the  

m
elements of Gβ are all the roots of xpn − x and are also roots of xp − x. 

Conversely, let g(x) be any prime polynomial in Fp[x] of degree  n. Then there is a finite field 
generated by g(x) with  pn elements. This proves that g(x) divides xpn − x, and thus g(x) divides 

m 
xp − x for every multiple m of n. Thus the divisors of xpm − x include every prime polynomial 
in Fp[x] whose degree n divides m. 

Moreover, xpm − x has no repeated factors. We proved this earlier assuming the existence of a 
field F with pm elements; however, we desire a proof that does not make this assumption. The 
following exercise yields such a proof. 

Exercise 16 (xpm −x has no repeated factors). The formal derivative of a degree-n polynomial 
f (x) ∈ Fp[x] is defined as 

n 
j−1f ′(x) =  (j mod p)fj x

j=1 

(a) Show that if f (x) =  g(x)h(x), then f ′(x) =  g′(x)h(x) +  g(x)h′(x). 

(b) Show that an prime polynomial g(x) is a repeated divisor of f (x) if and only if g(x) is a  
divisor of both f (x) and  f ′(x). 

(c) Show that xpm − x has no repeated prime factors over Fp.


Now we can conclude our discussion of the factorization of xpm − x as follows:


m
Theorem 7.22 (Factors of xpm − x) The polynomial xp − x factors over Fp into the product 
of the prime polynomials in Fp[x] whose degrees divide m, with no repetitions. 

For example, over F2, we have  

x 2 + x = x(x + 1);  

x 4 + x = x(x + 1)(x 2 + x + 1);  

x 8 + x = x(x + 1)(x 3 + x 2 + 1)(x 3 + x + 1);  
16 + xx = x(x + 1)(x 2 + x + 1)(x 4 + x 3 + 1)(x 4 + x 3 + x 2 + x + 1)(x 4 + x + 1). 

Exercise 17. Find all prime polynomials g(x) ∈ F3[x] of degree 1 and 2 over the ternary field 
F3. Show that the product of these polynomials is x9 − x = x9 + 2x. Explain, with reference to 
F9. 
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7.9 Finite fields Fpm exist for all prime p and m ≥ 1 

At last we can prove that for every prime p and positive integer m there exists a prime polynomial 
g(x) ∈ Fp[x] of degree  m. This will prove the existence of a finite field Fg(x) with pm elements. 

Using the factorization of Theorem 7.22, we will show that there do not exist enough prime 
mpolynomials of degree less than m that their product could have degree p . 

Let N (n) denote the number of prime polynomials over Fp of degree n. The product of these 
polynomials has degree nN (n). Since xpm − x is the product of these polynomials for all divisors 
n of m, and there are no repeated factors, its degree pm is equal to 

m p = nN (n) (7.8) 
n: n|m 

This formula may be solved recursively for each N (m), starting with N (1) = p. 

Exercise 18. Calculate  N (m) for  p = 2  for  m = 1 to 10. Check your results against those 
stated in Section 7.5.4. 

Now we are in a position to prove the desired theorem: 

Theorem 7.23 (Existence of prime polynomials) Let N (m) be the number of prime poly-
nomials in Fp[x] of degree m, which is given recursively by (7.8). For every prime p and positive 
integer m, N (m) > 0. 

Proof. Note first that nN (n) ≤ pn. Thus  

m n p ≤ mN (m) +  p ≤ mN (m) + (m/2)pm/2 , 
n<m: n|m 

where we have upperbounded the number of terms in the sum by m/2 and upperbounded each 
term by pm/2, since the largest divisor of m other than m is at most m/2. Thus 

mN (m) ≥ p m − (m/2)pm/2 = pm/2(pm/2 − m/2). 

The quantity pm/2 − m/2 is positive for p = 2, m  = 2, and is increasing in both p and m. Thus  
mN (m) is positive for all prime p and all m ≥ 2. Moreover N (1) = p. 

Since a finite field Fg(x) with pm elements can be constructed from any prime polynomial 
g(x) ∈ Fp[x] of degree  m, this implies: 

Theorem 7.24 (Existence of finite fields) For every prime p and positive integer m, there 
exists a finite field with pm elements. 

Moreover, for each n that divides m, there exists a unique subfield G with pn elements, namely 
the roots of the polynomial xpn − x: 

Theorem 7.25 (Existence of finite subfields) Every finite field with pm elements has a sub-
field with pn elements for each positive integer n that divides m. 

In summary, the factorization of xpm − x into minimal polynomials partitions the elements of 
Fpm into cyclotomic cosets whose properties are determined by their minimal polynomials. The 
roots of g(x) have multiplicative order k if g(x) divides xk − 1 and does not divide xj − 1 for  
j <  k. Moreover, the roots of g(x) are elements of the subfield with pn elements if and only if 
g(x) divides xpn − x, or equivalently if their order k divides pn − 1. 
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Example 3 (cont.) Over F2, the polynomial x16 + x factors as follows: 

16 + xx = x(x + 1)(x 2 + x + 1)(x 4 + x 3 + 1)(x 4 + x 3 + x 2 + x + 1)(x 4 + x + 1). 

Moreover, x3 +1  =  (x+1)(x2 + x+1)  and  x5 +1  =  (x+1)(x4 + x3 + x2 + x+ 1). The primitive 
elements are thus the roots of x4 + x + 1 and x4 + x3 + 1. If we choose a root of x4 + x + 1  as  
α, then  F16 = {0, 1, α, . . . , α14} partitions into cyclotomic cosets as follows: 

• One zero element (0), minimal polynomial x; 

• One element of order 1 (1), minimal polynomial x + 1;  

• Two elements of order  3 (α5 , α10), minimal polynomial x2 + x + 1;  

• Four elements of order 5 (α3, α6, α9, α12), minimal polynomial x4 + x3 + x2 + x + 1;  

• Four elements of order 15 (α, α2, α4, α8), minimal polynomial x4 + x + 1;  

• Four elements of order 15 (α7, α14, α13, α11), minimal polynomial x4 + x3 + 1.  

F16 has a prime subfield F2 consisting of the elements whose minimal polynomials divide x2 + x, 
namely 0 and 1. It also has a subfield F4 consisting of the elements whose minimal polynomials 

∗divide x4 + x, namely {0, 1, α5, α10}. Alternatively, F ∗ consists of the three elements of F164 
whose multiplicative orders divide 3. 

Exercise 19 (construction of F32). 

(a) Find the prime polynomials in F2[x] of degree 5, and determine which have primitive roots. 

(b) For some minimal polynomial g(x) with a primitive root α, construct a field Fg(x) with 32 
elements. Give a table with the elements partitioned into cyclotomic cosets as above. Specify the 
minimal polynomial and the multiplicative order of each nonzero element. Identify the subfields 
of Fg(x). 

(c) Show how to do multiplication and division in Fg(x) using this “log table.” Discuss the 
rules for multiplication and division in Fg(x) when one of the field elements involved is the zero 
element 0 ∈ Fg(x). 

(d) [Optional] If you know something about maximum-length shift-register (MLSR) sequences, 
show that there exists a correspondence between the “log table” given above and a certain MLSR 
sequence of length 31. 
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