Jan. 2008 - Advanced Algorithms - Max: 1 Hour
Calculators are not permitted
Proper justification to your answers is absolutely necessary.

Name and Roll No.:

1. Is 2 primitive (i.e., a generator) in Z_{19}^{*} ?
2. Find a primitive element in $Z_{19^{7}}^{*}$ (Hint: $\left.2^{18}=58 \bmod 361\right)$.
3. How many elements $1 \leq i \leq n=2700$ satisfy $G C D(n, i)=3$?
4. Evalutate $17^{119} \bmod 99$. Don't evaluate directly.
5. Find a solution for the equation $x^{2}=1 \bmod 323$ other than $x \in\{+1,-1\}$. (Note: $323=17 \times 19$).
6. Let p be odd prime. Let q_{1}, \ldots, q_{k} be prime factors of $p-1$. Show that $a \in Z_{p}^{*}$ generates Z_{p}^{*} if and only if $a^{(p-1) / q_{i}} \neq 1 \bmod p$ for all $1 \leq i \leq k$.
7. Show that the equation $x^{2}+1=0 \bmod p, p$ odd prime has a solution if and only if $p=1 \bmod 4$. (Hint: show that $a \in Z_{p}^{*}$ has a square root in Z_{p} if and only if $a^{(p-1) / 2}=1 \bmod p$).
