Jan. 2008 — Advanced Algorithms — Max: 1 Hour Calculators are not permitted Proper justification to your answers is absolutely necessary.

Name and Roll No.:

1. Is 2 primitive (i.e., a generator) in $Z_{19}^{\ast}?$

2. Find a primitive element in $Z_{19^7}^*$ (Hint: $2^{18} = 58 \mod 361$).

3. How many elements $1 \le i \le n = 2700$ satisfy GCD(n, i) = 3?

4. Evalutate $17^{119} \mod 99$. Don't evaluate directly.

5. Find a solution for the equation $x^2 = 1 \mod 323$ other than $x \in \{+1, -1\}$. (Note: $323 = 17 \times 19$).

3

3

3

Advanced Algorithms

4

6. Let p be odd prime. Let $q_1, ..., q_k$ be prime factors of p-1. Show that $a \in Z_p^*$ generates Z_p^* if and analy if $a^{(p-1)/q_i} \neq 1 \mod p$ for all $1 \leq i \leq k$.

7. Show that the equation $x^2 + 1 = 0 \mod p$, p odd prime has a solution if and only if $p = 1 \mod 4$. (Hint: show that $a \in Z_p^*$ has a square root in Z_p if and only if $a^{(p-1)/2} = 1 \mod p$).