Feb. 2008 - Advanced Algorithms - Max: 1 Hour
Calculators are not permitted
Proper justification to your answers is absolutely necessary.

Name and Roll No.: \qquad

1. Find a basis of Eigen vectors for the map defined from $\mathcal{C}^{3} \longrightarrow \mathcal{C}^{3}$ by the matrix $\left[\begin{array}{llll}a_{0} & a_{3} & a_{2} & a_{1} \\ a_{1} & a_{0} & a_{3} & a_{2} \\ a_{2} & a_{1} & a_{0} & a_{3} \\ a_{3} & a_{2} & a_{1} & a_{0}\end{array}\right]$
2. Find all Eigen values of the above matrix. Express your answer in terms of a_{0}, a_{1}, a_{2} and a_{3}
3. Find the cordinates of the vector $(1,0,0)$ in : \mathcal{R}^{3} with respect to tbe basis $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T}$, $(0,0,1)^{T}$.
4. How many elements in $Z_{p q}^{*}$ have square roots if p and q are primes? (Justify your answer)
5. Does -1 have a square root in Z_{209}^{*} ? Find all roots (if any). (Note: $209=11 \times 19$).
6. Show that a number n of the form $p^{2} q, p, q$ primes is not a Carmichael number. You may assume that $Z_{p^{2}}^{*}$ is cyclic as well as the CRT. Don't assume any theorem proved about Carmichael numbers.
7. Let $g(x) \in Z_{p}[X]$ be irreducible of degree n. Let $\beta(x) \in Z_{p}[X] /\langle g(x)\rangle$. Show that there exists $a_{0}, a_{1}, \ldots, a_{n}$ in Z_{p}, not all zero such that $a_{0}+a_{1} \beta(x)+a_{2} \beta^{2}(x) \ldots+a_{n} \beta^{n}(x)=0 \bmod g(x)$
