3

3

3

Feb. 2008 — Advanced Algorithms — Max: 1 Hour Calculators are not permitted Proper justification to your answers is absolutely necessary.

Name and Roll No.:					
1. Find a basis of Eigen vectors for the map defined from $\mathcal{C}^3 \longrightarrow \mathcal{C}^3$ by the matrix	$\begin{array}{c} a_0\\a_1\\a_2\\a_3\end{array}$	$egin{array}{c} a_3\ a_0\ a_1\ a_2 \end{array}$	$egin{array}{c} a_2\ a_3\ a_0\ a_1 \end{array}$	a_1 a_2 a_3 a_0	

2. Find all Eigen values of the above matrix. Express your answer in terms of a_0, a_1, a_2 and a_3

3. Find the cordinates of the vector (1, 0, 0) in : \mathcal{R}^3 with respect to the basis $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)^T, (\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)^T, (\frac{1}{\sqrt{2}}, 0)^T, (\frac{$

4. How many elements in Z_{pq}^{\ast} have square roots if p and q are primes? (Justify your answer)

Auvanceu Aigoritinnis

3

4

4

5. Does -1 have a square root in Z_{209}^* ? Find all roots (if any). (Note: $209 = 11 \times 19$).

6. Show that a number n of the form p^2q , p, q primes is not a Carmichael number. You may assume that $Z_{p^2}^*$ is cyclic as well as the CRT. Don't assume any theorem proved about Carmichael numbers.

7. Let $g(x) \in Z_p[X]$ be irreducible of degree n. Let $\beta(x) \in Z_p[X]/\langle g(x) \rangle$. Show that there exists $a_0, a_1, ..., a_n$ in Z_p , not all zero such that $a_0 + a_1\beta(x) + a_2\beta^2(x)... + a_n\beta^n(x) = 0 \mod g(x)$