
Assignment I

Design and Analysis of Algorithms

1. Let f be a monotonically decreasing function with positive integer valued input and integer valued
output. (Thus f(1) > f(2) > f(3).....) You are given a “black box” function int ComputeF (int)
that returns the value of f(i) if a positive integer i is given as the input. We want the smallest
(positive) integer value n such that f(n) < 0. Design an algorithm to find the value of n with only
O(log n) calls to the function ComputeF .

2. Suppose a, b are two integers, we say a positive integer d is a greatest common divisor, GCD(a, b)
if d|a, d|b and for any other e|a, e|b, it is also true that e|d. Let a > b. Show that GCD(a, b) =
GCD(a−xb, b) for any integer x. Clearly, if b|a, GCD(a, b) = b. Using these observations, choosing
appropriate value for x, show that GCD(a, b) can be computed with at most 2 log2 a recursive calls.
(Hint: Show that a− xb can be made always less than a

2
by appropriate choice of x.)

3. Let G be a graph. Fix any vertex v. Consider the following:

MST (G, v)
. Pick the nearest neighbour w of v // break ties arbitrarily
. Print(v, w)
. G′ = Contract(G, (v, w)) // Let the contracted vertex be called x
. MST (G′, x)

Prove that the algorithm correctly computes a minimum spanning tree in the graph G. As was done
in the case of Kruskal’s algorithm, eliminate the contraction step and show how the algorithm can be
implemented in O((n + e) log n) complexity.

4. A shop offers you a special Onam gift. You can buy items in the shop for reduced prices. Let us
assume that the items listed for profit purchase are 1, 2, 3, ..., n. purchase of item i offers you a profit
pi. But item i has weight wi. Though you have lot of money with you to spend, your car can carry
only W Kg. Design an O(nW) algorithm that allows you to decide on which items to purchase so as
to maximize your profit. (Items in the shop can’t be taken fractionally - as is the case with washing
machines or refrigerators) Give an O(n log n) greedy strategy for solving the problem if items can be
taken fractionally (as is the case with items like rice and sugar) [Hint: Consider profit/weight ratio]

5. In the class, we studied the problems of finding the maximum independent set in an interval graph
as well as optimal colouring of an interval graph. Here is a recursive algorithm design for finding the
maximum independent set in a general graph. Given graph G(V,E), let V = {v1, v2, .., vn}. suppose
we pick the v1 in our optimal independent set, then we can’t pick any of its neighbours. and we must
look for a maximum independent set in reduced graph with v1 and all its neighbours removed. On the
other hand, if we do not pick v1, Then, the problem reduces to finding the maximum independent set
G \ v1. Using these observations, design a divide and conquer algorithm for solving the problem. Show
that your algorithm needs exponential running time.

6. This question attempts to find an exponential time algorithm for finding the minimum number of colours
needed for a proper colouring of a graph G (Chromatic number). Suppose G has n vertices. If G is
a complete graph, clearly n colours are required. Otherwise, let u, v be two non-adjacent vertices in
G. Let G1 be the graph obtained by adding the edge (u, v) to G and G2 be the graph obtained
by contracting the edge (u, v) in G1. Argue that the chromatic number of G is the minimum of the
chromatic number of G1 and G2. Design a recursive algorithm based on this observation and prove that
the algorithm terminates and outputs the correct answer. Show that the running time of the algorithm
is exponential.

7. Suppose we want to construct a binary search tree of keys {1, 2, ...n}. We know in advance that key
i will be searched fi times. Since several binary search trees are possible with keys {1, 2, ..n}, we
would like to find one that minimizes the search cost. The cost of searching an item i in a BST T is

fi.di(T) where di(T) denotes the depth of the item i in the tree T . (For example, if n = 3, Let
f1 = 1, f2 = 2, f3 = 3, then if the tree has 2 at the root, the cost will be 1×2 + 2×1 + 3×2.). To
find the optimal solution, suppose element i is at the root, and if C(1, i− 1) is the cost of the optimal
left subtree containing 1 to i and C(i + 1, n) is the cost of the optimal right subtree with items i + 1
to n, then, show that the cost of the tree will be C(1, i − 1) + C(i + 1, n) +

∑n
j=1 fj . Develop a

recursive solution for the problem and use dynamic programming to reduce the complexity to O(n3).

8. Suppose we are given a set of airports {1, 2, ..n}. The fare for a direct flight from i to j is given by
c(i, j). We would like to get a flight sequence that optimizes the travel cost from city i to city j for all
values of i, j (possibly by taking several hops instead of taking a direct flight). To achieve this, consider
the following strategy. Let Ck(i, j) denote the optimal cost to fly from i to j without landing on any air
port numbered greater than k. (Example, C2(4, 5) computes the best way to travel from 4 to 5 where
you may chose to take hops to either 1 or 2 as intermediate steps, but not to any air port with number
exceeding 2.) Clearly C0(i, j) = c(i, j) as direct flight is the only option permitted here. Moreover
Cn(i, j) is nothing but the optimal cost which we want to compute. The following outlines a way to
compute Ck+1(i, j) if we know the value of Ck(r, s) for all r, s.

• Show that Ck+1(i, j) = min{Ck(i, j), Ck(i, k + 1) + Ck(k + 1, j)}
• write a recursive program to compute Cn(i, j).

• Using an array to store Ck(i, j) values, design a dynamic programming strategy to compute

Ck+1(i, j). Iterating over k show that we can solve the problem in O(n3) time. (Note: The
array used for storing Ck(i, j) values can be re-used to store Ck+1(i, j) in the next iteration over
k).

9. In the airport question posed above, suppose we change our objective to start from airport 1, visit every
airport exactly once and come back to vertex 1, Let us see what can be done. A straightforward method
would be to generate all permutations of {1, 2, .., n} and take the minimum cost route. This leads to
an Ω(n!) solution. The following outlines a way of doing this more efficiently, though using exponential
time. Let S be a set k nodes (airports) such that 1 ∈ S. Suppose i is another node in S, i 6= 1.
Suppose we want to find the best way to start from 1, visit all nodes in S and finally land at i. Let
Cost(S, i) denote the cost of such an optimal sequence of hops in S. we have two cases:

• S contains only 1 and i (i.e., k = 2). In this case C(S, i) = c(1, i) (the only possibility).

• If S contains nodes other than 1 and i, then for each j ∈ S \ {1, i}, we can compute
C(S \ i, j) + c(j, i), and infer the value of C(S, i).

Show that this strategy solves the problem in O(2npoly(n)) complexity.

Page 2

