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Chapter 12 Local Search

12.7 Best-Response Dynamics and Nash Equilibria

Thus far we have been considering local search as a technique for solving
optimization problems with a single objective—in other words, applying local
operations to a candidate solution so as to minimize its total cost. There are
many settings, however, where a potentially large number of agents, each with
its own goals and objectives, collectively interact so as to produce a solution
to some problem. A solution that is produced under these circumstances often
reflects the “tug-of-war” that led to it, with each agent trying to pull the solution
in a direction that is favorable to it. We will see that these interactions can be
viewed as a kind of local search procedure; analogues of local minima have a
natural meaning as well, but having multiple agents and multiple objectives
introduces new challenges.

The field of game theory provides a natural framework in which to talk
about what happens in such situations, when a collection of agents interacts
strategically—in other words, with each trying to optimize an individual ob-
jective function. To illustrate these issues, we consider a concrete application,
motivated by the problem of routing in networks; along the way, we will in-
troduce some notions that occupy central positions in the area of game theory
more generally.

ﬂ The Problem

In a network like the Internet, one frequently encounters situations in which
a number of nodes all want to establish a connection to a single source
node s. For example, the source s may be generating some kind of data
stream that all the given nodes want to receive, as in a style of one-to-many
network communication known as multicast. We will model this situation by
representing the underlying network as a directed graph G = (V, E), with a cost
e > 0 on each edge. There is a designated source node s € V and a collection
of k agents located at distinct terminal nodes t;, t,, . . ., t;, € V. For simplicity,
we will not make a distinction between the agents and the nodes at which
they reside; in other words, we will think of the agents as being t;, t,, . . . , .
Each agent ¢; wants to construct a path P; from s to ¢; using as little total cost
as possible.

Now, if there were no interaction among the agents, this would consist of
k separate shortest-path problems: Each agent t; would find an s-t; path for
which the total cost of all edges is minimized, and use this as its path P;. What
makes this problem interesting is the prospect of agents being able to share the
costs of edges. Suppose that after all the agents have chosen their paths, agent
t; only needs to pay its “fair share” of the cost of each edge e on its path; that
is, rather than paying c, for each e on P, it pays ¢, divided by the number of
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agents whose paths contain e. In this way, there is an incentive for the agents
to choose paths that overlap, since they can then benefit by splitting the costs
of edges. (This sharing model is appropriate for settings in which the presence
of multiple agents on an edge does not significantly degrade the quality of
transmission due to congestion or increased latency. If latency effects do come
into play, then there is a countervailing penalty for sharing; this too leads to
interesting algorithmic Questions, but we will stick to our current focus for
now, in which sharing comes with benefits only.)

Best-Response Dynamics and Nash Equilibria: Definitions and
Examples

To see how the option of sharing affects the behavior of the agents, let’s begin
by considering the pair of very simple examples in Figure 12.8. In example (a),
each of the two agents has two options for constructing a path: the middle route
through v, and the outer route using a single edge. Suppose that each agent
starts out with an initial path but is continually evaluating the current situation
to decide whether it’s possible to switch to a better path.

In example (a), suppose the two agents start out using their outer paths.
Then t; sees no advantage in switching paths (since 4 < 5 + 1), but ¢, does
(since 8 > 5+ 1), and so t; updates its path by moving to the middle. Once
this happens, things have changed from the perspective of t;: There is suddenly
an advantage for ¢, in switching as well, since it now gets to share the cost of
the middle path, and hence its cost to use the middle path becomes 2.5 + 1 < 4.
Thus it will switch to the middle path. Once we are in a situation where both

(b)

Figure 12.8 (a) It is in the two agents’ interest to share the middle path. (b) It would
be better for all the agents to share the edge on the left. But if all k agents start on the

k agents
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sides are using the middle path, neither has an incentive to switch, and so this
is a stable solution.

Let’s discuss two definitions from the area of game theory that capture
what’s going on in this simple example. While we will continue to focus on
our particular multicast routing problem, these definitions are relevant to any
setting in which multiple agents, each with an individual objective, interact to
produce a collective solution. As such, we will phrase the definitions in these
general terms.

® First of all, in the example, each agent was continually prepared to
improve its solution in response to changes made by the other agent(s).
We will refer to this process as best-response dynamics. In other words,
we are interested in the dynamic behavior of a process in which each
agent updates based on its best response to the current situation.

@ Second, we are particularly interested in stable solutions, where the best
response of each agent is to stay put. We will refer to such a solution,
from which no agent has an incentive to deviate, as a Nash equilibrium.
(This is named after the mathematician John Nash, who won the Nobel
Prize in economics for his pioneering work on this concept.) Hence,
in example (a), the solution in which both agents use the middle path
is a Nash equilibrium. Note that the Nash equilibria are precisely the
solutions at which best-response dynamics terminate.

The example in Figure 12.8(b) illustrates the possibility of multiple Nash
equilibria. In this example, there are k agents that all reside at a common node
t (thatis, t; =t, = .- =t; =t), and there are two parallel edges from s to t with
different costs. The solution in which all agents use the left-hand edge is a Nash
equilibrium in which all agents pay (1 + ¢)/k. The solution in which all agents
use the right-hand edge is also a Nash equilibrium, though here the agents each
pay k/k =1. The fact that this latter solution is a Nash equilibrium exposes an
important point about best-response dynamics. If the agents could somehow
synchronously agree to move from the right-hand edge to the left-hand one,
they’d all be better off. But under best-response dynamics, each agent is only
evaluating the consequences of a unilateral move by itself. In effect, an agent
isn’t able to make any assumptions about future actions of other agents—in
an Internet setting, it may not even know anything about these other agents
or their current solutions—and so it is only willing to perform updates that
lead to an immediate improvement for itself.

To quantify the sense in which one of the Nash equilibria in Figure 12.8(b)
is better than the other, it is useful to introduce one further definition. We
say that a solution is a social optimum if it minimizes the total cost to all
agents. We can think of such a solution as the one that would be imposed by
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a benevolent central authority that viewed all agents as equally important and

hence evaluated the quality of a solution by summing the costs they incurred.

Note that in both (a) and (b), there is a social optimum that is also a Nash
equilibrium, although in (b) there is also a second Nash equilibrium whose
& | cost is much greater.

The Relationship to Local Search

f Around here, the connections to local search start to come into focus. A set of

£ agents following best-response dynamics are engaged in some kind of gradient
descent process, exploring the “landscape” of possible solutions as they try to
minimize their individual costs. The Nash equilibria are the natural analogues
of local minima in this process: solutions from which no improving move is
possible. And the “local” nature of the search is clear as well, since agents are
only updating their solutions when it leads to an immediate improvement.

Having said all this, it’s important to think a bit further and notice the

ks crucial ways in which this differs from standard local search. In the beginning
of this chapter, it was easy to argue that the gradient descent algorithm for
a combinatorial problem must terminate at a local minimum: each update
decreased the cost of the solution, and since there were only finitely many
possible solutions, the sequence of updates could not go on forever. In other
words, the cost function itself provided the progress measure we needed to
establish termination.

In best-response dynamics, on the other hand, each agent has its own
personal objective function to minimize, and so it’s not clear what overall
“progress” is being made when, for example, agent t; decides to update its
path from s. There’s progress for t;, of course, since its cost goes down, but
this may be offset by an even larger increase in the cost to some other agent.
Consider, for example, the network in Figure 12.9. If both agents start on the Figure 12.9 A network in
middle path, then ¢; will in fact have an incentive to move to the outer path; its which the unique Nash equi-
cost drops from 3.5 to 3, but in the process the cost of t, increases from 3.5 to 6. gggfnrﬁril.ffers from the social
(Once this happens, t, will also move to its outer path, and this solution—with
both nodes on the outer paths—is the unique Nash equilibrium.)

There are examples, in fact, where the cost-increasing effects of best-

response dynamics can be much worse than this. Consider the situation in

Figure 12.10, where we have k agents that each have the option to take a
common outer path of cost 1 + & (for some small number & > 0), or to take their

L8 own alternate path. The alternate path for ¢ has cost 1/j. Now suppose we start
5 with a solution in which all agents are sharing the outer path. Each agent pays
E (1+ ¢&)/k, and this is the solution that minimizes the total cost to all agents.
But running best-response dynamics starting from this solution causes things

to unwind rapidly. First ¢, switches to its alternate path, since 1/k < (1 + ¢)/k.
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Chapter 12 Local Search

The optimal solution
costs 1 + €, while
the unique Nash
equilibrium costs
much more.

Figure 12.10 A network in which the unique Nash equilibrium costs H(k) = &(log k)
times more than the social optimum.

As a result of this, there are now only k — 1 agents sharing the outer path,
and so t,_; switches to its alternate path, since 1/k-1) < (1+¢)/(k-1).
After this, t;_, switches, then f,_;, and so forth, until all k agents are using
the alternate paths directly from s. Things come to a halt here, due to the
following fact.

(12.13)  The solution in Figure 12.10, in which each agent uses its direct path
from s, is a Nash equilibrium, and moreover it is the unique Nash equilibrium
for this instance.

Proof. To verify that the given solution is a Nash equilibrium, we simply need
to check that no agent has an incentive to switch from its current path. But this
is clear, since all agents are paying at most 1, and the only other option—the
(currently vacant) outer path—has cost 1 + .

Now suppose there were some other Nash equilibrium. In order to be
different from the solution we have just been considering, it would have to
involve at least one of the agents using the outer path. Let ¢ 4 by, - .. L, De
the agents using the outer path, where j; <j, < --- < Je- Then all these agents
are paying (1+ ¢)/£. But notice that j, > ¢, and s0 agent ¢;, has the option to
pay only 1/j, < 1/¢ by using its alternate path directly from s. Hence t;, has an
incentive to deviate from the current solution, and hence this solutlon cannot

be a Nash equilibrium. =

Figure 12.8(b) already illustrated that there can exist a Nash equilibrium
whose total cost is much worse than that of the social optimum, but the
examples in Figures 12.9 and 12.10 drive home a further point: The total cost
to all agents under even the most favorable Nash equilibrium solution can be
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worse than the total cost under the social optimum. How much worse? The
total cost of the social optimum in this example is 1 + ¢, while the cost of the
unique Nash equilibriumis 1+ 1 + 1 + ...+ t=yk 1. We encountered this
expression in Chapter 11, where we defined it to be the harmonic number H (k)
and showed that its asymptotic value is H (k) =0©(og k).

These examples suggest that one can’t really view the social optimum as
the analogue of the global minimum in a traditional local search procedure. In
standard local search, the global minimum is always a stable solution, since no
improvement is possible. Here the social optimum can be an unstable solution,
since it just requires one agent to have an interest in deviating.

Two Basic Questions

Best-response dynamics can exhibit a variety of different behaviors, and we’ve
just seen a range of examples that illustrate different phenomena. It’s useful at
this point to step back, assess our current understanding, and ask some basic
questions. We group these questions around the following two issues.

* The existence of a Nash equilibrium. At this point, we actually don’t
have a proof that there even exists a Nash equilibrium solution in every
instance of our multicast routing problem. The most natural candidate
for a progress measure, the total cost to all agents, does not necessarily
decrease when a single agent updates its path.

Given this, it’s not immediately clear how to argue that the best-
response dynamics must terminate. Why couldn’t we get into a cycle
where agent ¢; improves its solution at the expense of t,, then ¢, improves
its solution at the expense of t;, and we continue this way forever? Indeed,
it’s not hard to define other problems in which exactly this can happen
and in which Nash equilibria don’t exist. So if we want to argue that best-
response dynamics leads to a Nash equilibrium in the present case, we
need to figure out what’s special about our routing problem that causes
this to happen.

® The price of stability. So far we’ve mainly considered Nash equilibria
in the role of “observers”: essentially, we turn the agents loose on the
graph from an arbitrary starting point and watch what they do. But if we
were viewing this as protocol designers, trying to define a procedure by
which agents could construct paths from s, we might want to pursue the
following approach. Given a set of agents, located at nodes Loty ooty
we could propose a collection of paths, one for each agent, with two
properties.

() The set of paths forms a Nash equilibrium solution; and

(i) Subject to (i), the total cost to all agents is as small as possible.
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Of course, ideally we’d like just to have the smallest total cost, as this is
the social optimum. But if we propose the social optimum and it’s not a
Nash equilibrium, then it won’t be stable: Agents will begin deviating and
constructing new paths. Thus properties (i) and (ii) together represent
our protocol’s attempt to optimize in the face of stability, finding the best
solution from which no agent will want to deviate.

We therefore define the price of stability, for a given instance of the
problem, to be the ratio of the cost of the best Nash equilibrium solution
to the cost of the social optimum. This quantity reflects the blow-up in
cost that we incur due to the requirement that our solution must be stable
in the face of the agents’ self-interest.

Note that this pair of questions can be asked for essentially any problem
in which self-interested agents produce a collective solution. For our multicast
routing problem, we now resolve both these questions. Essentially, we will
find that the example in Figure 12.10 captures some of the crucial aspects
of the problem in general. We will show that for any instance, best-response
dynamics starting from the social optimum leads to a Nash equilibrium whose
cost is greater by at most a factor of H(k) = @(log k).

Finding a Good Nash Equilibrium

We focus first on showing that best-response dynamics in our problem always
terminates with a Nash equilibrium. It will turn out that our approach to
this question also provides the necessary technique for bounding the price
of stability.

The key idea is that we don’t need to use the total cost to all agents as the
progress measure against which to bound the number of steps of best-response
dynamics. Rather, any quantity that strictly decreases on a path update by
any agent, and which can only decrease a finite number of times, will work
perfectly well. With this in mind, we try to formulate a measure that has this
property. The measure will not necessarily have as strong an intuitive meaning
as the total cost, but this is fine as long as it does what we need.

We first consider in more detail why just using the total agent cost doesn’t
work. Suppose, to take a simple example, that agent t; is currently sharing, with
x other agents, a path consisting of the single edge e. (In general, of course,
the agents’ paths will be longer than this, but single-edge paths are useful to
think about for this example.) Now suppose that ¢; decides it is in fact cheaper
to switch to a path consisting of the single edge f, which no agent is currently
using. In order for this to be the case, it must be that ¢; < c,/(x + 1). Now, as
a result of this switch, the total cost to all agents goes up by ¢;: Previously,
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X+ 1 agents contributed to the cost c,, and no one was incurring the cost cy;
but, after the switch, x agents still collectively have to pay the full cost c,, and
t; is now paying an additional cr-

In order to view this as progress, we need to redefine what “progress”
means. In particular, it would be useful to have a measure that could offset
the added cost ¢; via some notion that the overall “potential energy” in the
system has dropped by c,/(x + 1). This would allow us to view the move by
t; as causing a net decrease, since we have €f < Co/(x + 1). In order to do this,
we could maintain a “potential” on each edge e, with the property that this
potential drops by c./(x + 1) when the number of agents using e decreases
from x +1 to x. (Correspondingly, it would need to increase by this much
when the number of agents using e increased from x to x + 1.)

Thus, our intuition suggests that we should define the potential so that,
if there are x agents on an edge e, then the potential should decrease by c./x
when the first one stops using e, by c,/(x — 1) when the next one stops using
e, by c,/(x — 2) for the next one, and so forth. Setting the potential to be
C/x+1/(x~D+---+1/2+1)=c,-H(x) is a simple way to accomplish
this. More concretely, we define the potential of a set of paths Py, P,, ..., P,
denoted ®(Py, P,, .. ., Py), as follows. For each edge e, let x, denote the number
of agents whose paths use the edge e. Then

QP Py, ... PY=) ¢, H(x,).
eeE

(We’ll define the harmonic number H (0) to be 0, so that the contribution of
edges containing no paths is 0.)

The following claim establishes that & really works as a progress measure.

(12.14)  Suppose that the current set of paths is P, P, ..., P, and agent tjup-
dates its path from P; to P]’ Then the new potential ®(Py, . . ., By, PJf Pty
Py) is strictly less than the old potential ®(Py, . . ., D1, Py, Py, ..., Py).

Proof. Before t; switched its path from Pj to P}, it was paying Zeer Ce/Xe,
since it was sharing the cost of each edge e with x, — 1 other agents. After the
switch, it continues to pay this cost on the edges in the intersection PN P]f,
and it also pays ¢¢/(xf + 1) on each edge f € P}’ —P;. Thus the fact that tj viewed
this switch as an improvement means that

I D I

f eP}f—P}-

Xf+1 Xe

!
eeP]—P].
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Now let’s ask what happens to the potential function ®. The only edges

on which it changes are those in PJ’ —P; and those in Pj—P]f . On the former set,
it increases by

> olHGy + 1) — Hxpl = > i

feP]’—P] fEP;'—Pj Xf+1

and on the latter set, it decreases by

> ClHE) —Hee - D)= 3 &,

X,
eePJ—P}f eeP)——PJf

So the criterion that t; used for switching paths is precisely the statement that

the total increase is strictly less than the total decrease, and hence the potential
® decreases as a result of ti’s switch. m

Now there are only finitely many ways to choose a path for each agent t;,
and (12.14) says that best-response dynamics can never revisit a set of paths

Py, ..., P once it leaves it due to an improving move by some agent. Thus we
have shown the following.

(12.15)  Best-response dynamics always leads to a set of paths that forms a
Nash equilibrium solution.

Bounding the Price of Stability Our potential function ¢ also turns out to
be very useful in providing a bound on the price of stability. The point is that,

although & is not equal to the total cost incurred by all agents, it tracks it
reasonably closely.

To see this, let C(Py, ..., P,) denote the total cost to all agents when the
selected paths are Py, . . ., Py. This quantity is simply the sum of ¢, over all
edges that appear in the union of these paths, since the cost of each such edge
is completely covered by the agents whose paths contain it.

Now the relationship between the cost function C and the potential func-
tion @ is as follows.

(12.16)  For any set of paths Py, . .., P, we have
CPL...,P)<®Py,...,PY) <HK)-C(P,, ..., Py.

Proof. Recall our notation in which X, denotes the number of paths containing
edge e. For the purposes of comparing C and @, we also define E* to be the
set of all edges that belong to at least one of the paths Py, ..., P;. Then, by
the definition of C, we have CPy,....P) = 2 eci+ Co-
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A simple fact to notice is that x, < k for all e. Now we simply write

CPu...,PO=) =< Y CH(x) =0, ...,P)

ecEt ecE+

=0 7l _-:—--'-"-‘I_

and

o

Py, .., PO= Y CHx)< Y cHK)=H®) -CP,,...,P). =

ecEt+ ecE+

Using this, we can give a bound on the price of stability.

o

(12.17) In every lnstance thereis a Nash equlllbrzum solutzon for whlch the
total cost to all agents exeeeds that of the social optzmum by at most a factor of
H(k).

Proof. To produce the desired Nash equilibrium, we start from a social op-
timum consisting of paths P*, ... , P¢ and run best-response dynamics. By
(12.15), this must terminate at a Nash equilibrium Py, ..., P

During this run of best-response dynamics, the total cost to all agents may .
have been going up, but by (12.14) the potential function was decreasing. {i1h
Thus we have ®(Py, ..., Py) < ®(P}, ..., P}). (| -

This is basically all we need since, for any set of paths, the quantities C il
and ¢ differ by at most a factor of H(k). Specifically, I8

CPr....PY) <®Py,...,P) <P}, ..., PY) SHK) -C(P;,...,P}). m il

Thus we have shown that a Nash equilibrium always exists, and there is
always a Nash equilibrium whose total cost is within an H(k) factor of the |
social optimum. The example in Figure 12.10 shows that it isn’t possible to '
improve on the bound of H(k) in the worst case. =)

Although this wraps up certain aspects of the problem very neatly, there
are a number of questions here for which the answer isn’t known. One il
particularly intriguing question is whether it’s possible to construct a Nash
equilibrium for this problem in polynomial time. Note that our proof of the
existence of a Nash equilibrium argued simply that as best-response dynamics
iterated through sets of paths, it could never revisit the same set twice, and
hence it could not run forever. But there are exponentially many possible sets
of paths, and so this does not give a polynomial-time algorithm. Beyond the
question of finding any Nash equilibrium efficiently, there is also the open e
question of efficiently finding a Nash equilibrium that achieves a bound of s
H(k) relative to the social optimum, as guaranteed by (12.17). !

— e

It’s also important to reiterate something that we mentioned earlier: It’s
not hard to find problems for which best-response dynamics may cycle forever

ity
e
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and for which Nash equilibria do not necessarily exist. We were fortunate
here that best-response dynamics could be viewed as iteratively improving a
potential function that guaranteed our progress toward a Nash equilibrium,
but the point is that potential functions like this do not exist for all problems
in which agents interact.

Finally, it’s interesting to compare what we’ve been doing here to a prob-
lem that we considered earlier in this chapter: finding a stable configuration
in a Hopfield network. If you recall the discussion of that earlier problem, we
analyzed a process in which each node “flips” between two possible states,
seeking to increase the total weight of “good” edges incident to it. This can
in fact be viewed as an instance of best-response dynamics for a problem in
which each node has an objective function that seeks to maximize this mea-
sure of good edge weight. However, showing the convergence of best-response
dynamics for the Hopfield network problem was much easier than the chal-
lenge we faced here: There it turned out that the state-flipping process was
in fact a “disguised” form of local search with an objective function obtained
simply by adding together the objective functions of all nodes—in effect, the
analogue of the total cost to all agents served as a progress measure. In the
present case, it was precisely because this total cost function did not work
as a progress measure that we were forced to embark on the more complex
analysis described here.

i Solved Exercises

Solved Exercise 1

The Center Selection Problem from Chapter 11 is another case in which one
can study the performance of local search algorithms.

Here is a simple local search approach to Center Selection (indeed, it’s a
common strategy for a variety of problems that involve locating facilities). In
this problem, we are given a set of sites S = {s, s,, . . ., 5} in the plane, and we
want to choose a set of k centers C = {cy, ¢;, . . . , ¢} whose covering radius—
the farthest that people in any one site must travel to their nearest center—is
as small as possible.

We start by arbitrarily choosing k points in the plane to be the centers
€1, €y, -« ., €. We now alternate the following two steps.

(i) Given the set of k centers ¢y, ¢, ..., c, we divide S into k sets: For
i=1,2,...,k, we define S; to be the set of all the sites for which ¢; is
the closest center.

(ii) Given this division of S into k sets, construct new centers that will be as
“central” as possible relative to them. For each set S;, we find the smallest




