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13.1 The Greedy Steiner Tree Algorithm

Recall that in the on-line Steiner tree problem [IW], the input consists of a graph G and a series of ver-

tices v

1

; v

2

; : : : ; v

n

. At each vertex request v

i

, the algorithm must compute T

i

, a Steiner tree that spans

v

1

; v

2

; : : : ; v

i

with the constraint T

i+1

� T

i

. That is, the tree is constructed incrementally at every request.

The cost incurred by the algorithm is the cost of the �nal tree T

n

.

The Greedy Steiner Tree algorithm (GST) simply pays the minimum incremental cost at every step. A

similar greedy algorithm exists for the on-line spanning tree problem, although it is much simpler since the

tree constructed in the on-line spanning tree problem may not include any nodes other than the v

i

. Note

that since a Steiner tree is also a spanning tree, a bound for the cost of the greedy spanning tree algorithm

is also a bound for the cost of GST, although the bound may not be very strong.

The following results are from Imaze and Waxeman:

Theorem 13.1 The competitive ratio for a greedy Steiner tree algorithm is dlogne.

Theorem 13.2 The competitive ratio for any on-line Steiner tree algorithm has a lower bound of

1

2

blognc.

As a simple case, consider a line with n equally spaced points. Let the �rst request be for the leftmost point

and the second be for the rightmost point. Then let all further requests be for points in the middle of the

remaining regions; the �rst two iterations are shown in Figure 13.1. The GST algorithm will pay a cost of

n logn while the optimal cost is n for a competitive ratio of logn.
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Figure 13.1: The �rst few requests to the GST algorithm from a sequence for which the tree costs n logn

A similar argument is used to show a general lower bound for the GST algorithm.

Begin by constructing a cycle that includes all the vertices, for example the dotted line in Figure 13.2. If

the node u was requested before the node v, then let w(u; v) be the distance between u and v on the tree.
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Now, group the vertices in pairs; there are two ways in which the vertices could be paired, call them P

1

and

P

2

. De�ne W

1

and W

2

as follows:

W

1

=

X

(u; v) 2 P

1

w(u; v)

W

2

=

X

(u; v) 2 P

2

w(u; v)

If W is the total weight of the cycle and OPT is the total weight of the optimal Steiner tree, then

W

1

+W

2

� W � 2OPT

Now, assume W

1

� W

2

, thus

W

1

� W=2 � OPT

Consider the set constructed by taking from each pair in P

1

, the node that was requested later. This set has

bn=2c nodes for which the aggregate cost is at mostW

1

< OPT. This analysis can be repeated recursively on

the remaining nodes. It will be repeated dlogne times for a total cost of OPTdlogne and thus a competitive

ratio of dlogne.

The following series of requests show the lower bound. In the graph on the left side of Figure 13.3, let

the �rst two requests be at nodes 1 and 2. The tree that is constructed must go through either the top or

the bottom. Assuming it goes through the top, replace the bottom edges with copies of the same graph,

generating the second graph in Figure 13.3. If this process is repeated, it is easy to show that the number

of nodes in the tree at every step is:

n

i

= n

i�1

+ 2(4

i

) 2 O(4

i

)

while the optimal cost is given by

OPT

i

= OPT

i�1

+ 2

i

= L 2 �(2

i

)

and the on-line cost is

ON = L+ L=2 + 2(L=4) + 4(L=8) + � � � = Ldlogne

and thus the competitive ratio c is 
(dlogne).

Some Open Problems

1. Is there an algorithm for the on-line Steiner tree problem that does better than dlogne on the Euclidean

plane? A lower bound of 
(

logn

log logn

) was shown in [AA].

2. Is there a graph such that GST is not within a constant factor of the best competitive ratio?

3. Steiner tree algorithms for particular graphs, generalizations, etc.

13.2 A Deterministic File Replication Algorithm

This algorithm was originally presented in [ABF1].

The algorithm maintains a list L of read requests. Upon a read request at node r, r is inserted in to L and

then the algorithm �nds the smallest sphere around r that contains D read requests from L. Let k be the

radius of that sphere. If no copy of the �le exists within a sphere of radius �k, (where � is some paramter

for the algorithm) the �le is replicated to r and all the requests within the �rst sphere are removed from

L. Writes requests are handled by updating all existing copies with no replication or deletion. However,
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to limit the overhead from write requests, all but one copy will be deleted after D write requests. If these

D requests were at nodes w

1

; w

2

; : : : ; w

D

, then a copy is maintained at node m where m minimizes some

function (e.g., the distance from m to all w

i

P

d(m;w

i

). The write request counter is then reset and the

algorithm proceeds.

Theorem 13.3 This algorithm is O(logn) competitive.

The proof is based on a variant of the GST proof. It looks at the optimal treeand considers equal neighbor-

hoods that cover the whole tree. A potential function is de�ned that \credits" the adversary when it has a

copy of the �le near a request but ALG does not. This analysis is repeated for dlogne levels of covering.

13.3 Competitive Distributed Algorithms

Distributed algorithms for the �le replication problem and other problems impose an additional constraint

on the amount of memory at every node. Distributed algorithms for many of the problems discussed so far

exist although they are generally not as good as the non-distributed versions.

Besides the obvious partial information about other nodes in the network, issues in the design of distributed

algorithms include congestion and concurrency. Standard distributed algorithms exchange control messages.

A simple technique on a uniform network is to elect a single \leader" node and run a centralized algorithm

at that node and communicate from the leader to all the other nodes. It is often possible to do much better

than that however. Finally, distributed algorithm design is somewhat simpli�ed on trees since it is clear how

control messages should be exchanged (since there is only one path between any two nodes).
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Figure 13.2: A simple Steiner tree with the vertices connected by a cycle
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Figure 13.3: Graphs with a lower bound for the Steiner tree problem of �(dlogne)


