5.3 Horn formulas

In order to display human-level intelligence, a computer must be able to perform at least some
modicum of logical reasoning. Horn formulas are a particular framework for doing this, for
expressing logical facts and deriving conclusions.

The most primitive object in a Horn formula is a Boolean variable, taking value either
true or false. For instance, variables z, y, and z might denote the following possibilities.

rz = the murder took place in the kitchen
the butler is innocent

z the colonel was asleep at 8 pm

A literal is either a variable z or its negation 7 (“NOT z”). In Horn formulas, knowledge about
variables is represented by two kinds of clauses:

1. Implications, whose left-hand side is an AND of any number of positive literals and whose
right-hand side is a single positive literal. These express statements of the form “if the
conditions on the left hold, then the one on the right must also be true.” For instance,

(zAw)=u

might mean “if the colonel was asleep at 8 pm and the murder took place at 8 pm then
the colonel is innocent.” A degenerate type of implication is the singleton “= z,” meaning
simply that z is true: “the murder definitely occurred in the kitchen.”

2. Pure negative clauses, consisting of an OR of any number of negative literals, as in
(@vovy)
(“they can’t all be innocent”).

Given a set of clauses of these two types, the goal is to determine whether there is a consis-
tent explanation: an assignment of true/false values to the variables that satisfies all the
clauses. This is also called a satisfying assignment.

The two kinds of clauses pull us in different directions. The implications tell us to set
some of the variables to true, while the negative clauses encourage us to make them false.
Our strategy for solving a Horn formula is this: We start with all variables false. We then
proceed to set some of them to true, one by one, but very reluctantly, and only if we absolutely
have to because an implication would otherwise be violated. Once we are done with this phase
and all implications are satisfied, only then do we turn to the negative clauses and make sure
they are all satisfied.

In other words, our algorithm for Horn clauses is the following greedy scheme (stingy is
perhaps more descriptive):

Input: a Horn formula
Output: a satisfying assignment, if one exists

set all variables to false

151



while there is an implication that is not satisfied:
set the right-hand variable of the implication to true

if all pure negative clauses are satisfied: return the assignment
else: return ‘‘formula is not satisfiable’’

For instance, suppose the formula is
(wAyAz)=z, (zAh2)=>w, 2=y, =z, (ANy)=>w, (WVEVEY), (2).

We start with everything false and then notice that z must be true on account of the sin-
gleton implication = z. Then we see that y must also be true, because of z = y. And so
on.

To see why the algorithm is correct, notice that if it returns an assignment, this assign-
ment satisfies both the implications and the negative clauses, and so it is indeed a satisfying
truth assignment of the input Horn formula. So we only have to convince ourselves that if
the algorithm finds no satisfying assignment, then there really is none. This is so because our
“stingy” rule maintains the following invariant:

If a certain set of variables is set to t rue, then they must be true in any satisfying
assignment.

Hence, if the truth assignment found after the while loop does not satisfy the negative clauses,
there can be no satisfying truth assignment.

Horn formulas lie at the heart of Prolog (“programming by logic”), a language in which you
program by specifying desired properties of the output, using simple logical expressions. The
workhorse of Prolog interpreters is our greedy satisfiability algorithm. Conveniently, it can
be implemented in time linear in the length of the formula; do you see how (Exercise 5.32)?

5.4 Set cover

The dots in Figure 5.11 represent a collection of towns. This county is in its early stages of
planning and is deciding where to put schools. There are only two constraints: each school
should be in a town, and no one should have to travel more than 30 miles to reach one of them.
What is the minimum number of schools needed?

This is a typical set cover problem. For each town z, let S, be the set of towns within 30
miles of it. A school at = will essentially “cover” these other towns. The question is then, how
many sets S; must be picked in order to cover all the towns in the county?

SET COVER

Input: A set of elements B; sets S1,...,5, C B
Output: A selection of the S; whose union is B.
Cost: Number of sets picked.

(In our example, the elements of B are the towns.) This problem lends itself immediately to a
greedy solution:

152



Figure 5.11 (a) Eleven towns. (b) Towns that are within 30 miles of each other.

(a) .. (b)
b
de
f
a e ¢
k, ‘g
.. L] h
i
°]j

Repeat until all elements of B are covered:

Pick the set S; with the largest number of uncovered elements.

This is extremely natural and intuitive. Let’s see what it would do on our earlier example:
It would first place a school at town a, since this covers the largest number of other towns.
Thereafter, it would choose three more schools—e¢, j, and either f or g—for a total of four.
However, there exists a solution with just three schools, at b, e, and i. The greedy scheme is
not optimal!

But luckily, it isn’t too far from optimal.

Claim Suppose B contains n elements and that the optimal cover consists of k sets. Then the
greedy algorithm will use at maost k1Inn sets.?

Let n; be the number of elements still not covered after ¢ iterations of the greedy algorithm
(so ng = n). Since these remaining elements are covered by the optimal k sets, there must be
some set with at least n;/k of them. Therefore, the greedy strategy will ensure that

which by repeated application implies n; < ng(1 — 1/k)!. A more convenient bound can be
obtained from the useful inequality

1 —z < e®* for all z, with equality if and only if z = 0,

which is most easily proved by a picture:

2In means inatural logarithm,i that is, to the basee.

153



Thus t
1
ne < no (1 - E) < ng(e®/F)t = nedt/k,
At t = klnn, therefore, n, is strictly less than ne® " = 1, which means no elements remain to
be covered.

The ratio between the greedy algorithm’s solution and the optimal solution varies from
input to input but is always less than Inn. And there are certain inputs for which the ratio is
very close to Inn (Exercise 5.33). We call this maximum ratio the approximation factor of the
greedy algorithm. There seems to be a lot of room for improvement, but in fact such hopes are
unjustified: it turns out that under certain widely-held complexity assumptions (which will
be clearer when we reach Chapter 8), there is provably no polynomial-time algorithm with a
smaller approximation factor.

154



