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We introduce the use linear programming (LP) in the design and analysis of approximation
algorithms.The topics include Vertex Cover, Set Cover, randomized rounding, dual-fitting. It is
assumed that the students have some background knowledge in basics of linear programming.

1 Vertex Cover via LP

Let G = (V,E) be an undirected graph with arc weights w : V → R+. Recall the vertex cover
problem from previous lecture. We can formulate it as an integer linear programming problem as
follows. For each vertex v we have a variable xv. We interpret the variable as follows: if xv = 1
if v is chosen to be included in a vertex cover, otherwise xv = 0. With this interprtation we can
easily see that the minimum weight vertex cover can be formulated as the following integer linear
program.

min
�

v∈V

wvxv

subject to
xu + xv ≥ 1 ∀e = (u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V

However, solving integer linear programs is NP-Hard. Therefore we use Linear Programming
(LP) to approximate the optimal solution, OPT(I), for the integer program. First, we can relax
the constraint xv ∈ {0, 1} to xv ∈ [0, 1]. It can be further simplified to xv ≥ 0, ∀v ∈ V .

Thus, a linear programming formulation for Vertex Cover is:

min
�

v∈V

wvxv

subject to
xu + xv ≥ 1 ∀e = (u, v) ∈ E

xv ≥ 0

We now use the following algorithm:

Vertex Cover via LP:
Solve LP to obtain an optimal fractional solution x∗

Let S = {v | x∗v ≥ 1
2}

Output S

Then the following claims are true:

Claim 1 S is a vertex cover.



Proof: Consider any edge, e = (u, v). By feasibility of x∗, x∗u + x∗v ≥ 1, and thus either x∗u ≥ 1
2 or

x∗v ≥ 1
2 . Therefore, at least one of u and v will be in S. ✷

Claim 2 w(S) ≤ 2OPTLP (I).

Proof: OPTLP (I) =
�

v wvx
∗
v ≥ 1

2

�
v∈S wv = 1

2w(S) ✷

Therefore, OPTLP (I) ≥ OPT(I)
2 for all instances I.

Note: For minimization problems: OPTLP (I) ≤ OPT(I), where OPTLP (I) is the optimal solu-
tion found by LP; for maximization problems, OPTLP (I) ≥ OPT(I).

Integrality Gap

We introduce the notion of integrality gap to show the best approximation guarantee we can acquire
by using the LP optimum as a lower bound.

Definition: For a minimization problem Π, the integrality gap for a linear programming relax-
ation/formulation LP for Π is supI∈π

OPT(I)
OPTLP (I) .

That is, the integrality gap is the worst case ratio, over all instances I of Π, of the integral
optimal value and the fractional optimal value. Note that different linear programming formulations
for the same problem may have different integrality gaps.

Claims 1 and 2 show that the integrality gap of the Vertex Cover LP formulation above is at
most 2.

Question: Is this bound tight for the Vertex Cover LP?

Consider the following example: Take a complete graph, Kn, with n vertices, and each vertex
has wv = 1. It is clear that we have to choose n − 1 vertices to cover all the edges. Thus,
OPT(Kn) = n− 1. However, xv = 1

2 for each v is a feasible solution to the LP, which has a total
weight of n

2 . So gap is 2− 1
n , which tends to 2 as n→∞.

Other Results on Vertex Cover

1. The current best approximation ratio for Vertex Cover is 2−Θ( 1√
log n

) [1].

2. Open problem: obtain a 2 − ε approximation or to prove that it is NP-hard to obtain 2 − ε
for any fixed ε > 0. Current best hardness of approximation: unless P=NP, there is no 1.36
approximation for Vertex Cover [2].

3. The vertex cover problem can be solved optimally in polynomial time for bipartite graphs.
This follows from what is known as K’́onig’s theorem.

4. The vertex cover problem admits a polynomial time approximation scheme (PTAS), that is
a (1 + �)-approximation for any fixed � > 0, for planar graphs. This follows from a general
approach due to Baker [?].


