CS373T

Exercise 2

2. Show that $\mathbf{BPP} \subseteq \mathbf{PSPACE}$

1. Show that $\text{NTIME}(f(n)) \subseteq \text{ATIME}(f(n))$.

- 3. Suppose a complexity class C has the property that whenever a language $L \in \mathbb{C}$ then $\overline{L} \in \mathbb{C}$. Show that $\mathbf{C}^{\mathbf{C}} = \mathbf{C}$.
- 4. Suppose for a language L there exists a polynomial time algorithm A and $0 < \epsilon < 1$ such that for $x \in L$, $Pr(A(x) = 1) \geq 1 - \epsilon$ and for all $x \notin L Pr(A(x) = 1) = 0$. What is the minimum value of k for which k fold repetition of the algorithm (call the new algorithm A') will give $Pr(A'(x) = 1) \ge 1 - 1/2^n$ for $x \in L$ where n = |x| and Pr(A'(x) = 1) = 0 for $x \notin L$ where n = |x|. (Observe that A' runs in polynomial time.)
- 5. Reading exercise from Sipser: Study the probability amplification lemma for the class BPP. That is, show that if for a language L there exists a polynomial time algorithm A and $0 < \epsilon < 1$ such that for $x \in L$, $Pr(A(x) = 1) \geq 1/2 + \epsilon$ and for all $x \notin L Pr(A(x) = 0) \geq 1/2 + \epsilon$ then as in the above problem show that there exists a polynomially bounded k (in the size of x) such that the algorithm A' obtained by k fold repetition of A (with decision by majority in this case) satisfies if $x \in L, Pr(A'(x) = 1) \ge 1 - 1/2^n$ and if $x \notin L, Pr(A'(x) = 0) \ge 1 - 1/2^n$ where n = |x|.
- 6. Show that **co-BPP**=**BPP**
- 7. Show that if for some $i \ge 1$, $NC_{i+1} = NC_i$ then $NC = NC_i$.
- 8. Show that **PolyL** does not have complete problems (w.r.t. \leq_m^{log} reductions). Hence conclude that $P \neq polyL$.
- 9. Show that 2SAT (satisfiability problem for boolean formula in conjuctive normal form with 2 literals per clause) is NL complete.
- 10. Recall that in our definition of the class NC_i we required that the gates have bounded fan-in (i.e., number of inputs: 2 input AND/OR gates were used). Suppose we allow unbounded fan-in, we can define AC_i as the class of langauges accepted by polynomial sized $O(\log^i n)$ depth uniform circuits of unbounded fan-in. We define $AC = \bigcup_{i>0} AC_i$. Show that $NC_i \subseteq AC_i \subseteq NC_{i+1}$. Hence conclude that AC = NC.
- 11. Show that if $PSPACE \subseteq P/Poly$ then $PSPACE \subseteq \Sigma_2^p \cap \Pi_2^p$.
- 12. Show that if $\mathbf{EXP} \subseteq \mathbf{P}/\mathbf{Poly}$ then $\mathbf{EXP} \subseteq \Sigma_2^{\mathbf{p}}$.
- 13. Show that there exists undecidable languages in P/Poly.
- 14. Show that if $\Sigma_i^p = \Sigma_{i+1}^p$ for some *i* then $\mathbf{PH} = \Sigma_i^p$
- 15. Show that if $3SAT \subseteq_m^p \overline{3SAT}$ then **PH=NP**.
- 16. The problem of linear programming is of maximizing an objective function $\mathbf{c}^T \mathbf{x}$ subject to constraints $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ where $\mathbf{c} \in \Re^n$, $\mathbf{x} = \langle x_1, ... x_n \rangle$ variables, $\mathbf{A} \in \Re^{m \times n}$, $\mathbf{b} \in \Re^m$. Show that if the problem is in **NC** (in the sense solvabable with polynomial size circuits of polylogrithmic depth), show that $\mathbf{P} = \mathbf{NC}$. (Hint: Network flow).
- 17. Show that the problem of determining whether the size of the smallest clique in a graph of n vertices is k is in Σ_2^p . Show that the problem of determining whether a given subset of k vertices from a clique of smallest size in the graph is solvable in $\mathbf{P}^{\mathbf{NP}}$.