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Abstract

It is shown that the assumption of NP having polynomial-size circuits implies

(apart from a collapse of the polynomial-time hierarchy as shown by Karp and Lip-

ton) that the classes AM and MA of Babai's Arthur-Merlin hierarchy coincide. This

means that also a certain inner collapse of the remaining classes of the polynomial-

time hierarchy occurs.

It is well known [KL80] that the assumption of NP having polynomial-size circuits

(in symbols NP � P=poly) implies that the polynomial-time hierarchy collapses to level

two (in symbols PH = �

P

2

= �

P

2

). The textbooks [BDG, KST93, BC93, Pa94] can be

consulted for the basic notations and results.

Furthermore, this collapse level was shown to be optimal, up to relativization, in

[He86]. There it is shown that under a suitable oracle, the collapse cannot go down to

the next lower level of the polynomial-time hierarchy, �

P

2

= P

NP

.

What we show here is, under the same assumption, an additional \inner collapse",

namely of the two classes AM and MA which are not known to be equal to each other,

and which are not known to be equal to �

P

2

. Figure 1 shows the known inclusion structure

of the classes in the polynomial-time hierarchy, whereas Figure 2 shows these inclusions

under the assumption NP � P=poly. The proof is not di�cult and just a combination

of known techniques, but the result as such has not been observed before, and we think

it has some signi�cance.

In both �gures the relative position of the classes NP

BPP

and BPP

NP

is also out-

lined. By [La83, Si83] (used in a relativized version) BPP

NP

is included in the class

(�

P

2

\ �

P

2

)

NP

= �

P

3

\ �

P

3

. By the fact that PH = �

P

2

= �

P

2

holds under the assumption

NP � P=poly, the class BPP

NP

is a subset of �

P

2

= �

P

2

in Figure 2. It is still open

whether the classes NP

BPP

and BPP

NP

are also a�ected by the collapse.
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Figure 1: Classes of the polynomial-time and the Arthur-Merlin hierarchy.

The classes MA and AM have been introduced in [BM88] as classes of the \Arthur-

Merlin" hierarchy. Their de�nition can be stated as follows. A set A is in MA if there is

a predicate B 2 P such that for all strings x the following holds:

x 2 A ) 9y Pr[ hx; y; zi 2 B ] > 3=4;

x 62 A ) 8y Pr[ hx; y; zi 2 B ] < 1=4:

A set A is in AM if there is a predicate B 2 P such that for all strings x the following

holds:

x 2 A ) Pr[ 9y hx; y; zi 2 B ] > 3=4;

x 62 A ) Pr[ 9y hx; y; zi 2 B ] < 1=4:

In both de�nitions all strings y; z are of some polynomial length in jxj, say p(jxj), where z

is chosen uniformly at random from all the strings of that length. The following inclusion

relations are known: NP

BPP

� MA � AM � �

P

2

, and MA � �

P

2

\ �

P

2

[BM88]. Figure 1

contains all known inclusions.

As preparation to the forthcoming proof, we observe (as in [Ho81]) that any (non-

uniform) family of circuits for the NP-complete set SAT can be converted into a new

(non-uniform) circuit family in which the circuits are still polynomial in their input

2



P

co-NPNP BPP

MA=AM co-MA=co-AM

�

�

�

�

�3

Q

Q

Q

Q

Qk

6

6 6

Q

Q

Q

Q

Qk

�

�

�

�

�3

BPP

NP

�

P

2

= �

P

2

= PH

6

�

�

�

�

�3

Q

Q

Q

Q

Qk

co-NP

BPP

NP

BPP

6 6

Figure 2: The classes under the assumption NP � P=poly.

size, and not only output a binary value depending on whether the input formula F

is satis�able, but also output a \witness" for satis�ability, i.e. a satisfying assignment

(if one exists). Such witness-constructing circuits can be obtained via the self-reducibility

of SAT by building a cascade of several original circuits, as illustrated in Figure 3. The

triangles indicate original circuits with binary output, whereas the boxes indicate a

circuit that transforms (the binary encoding of) F = F (x

1

; : : : ; x

n

), where the x

i

are

Boolean variables, into (the encoding of) F (a

1

; : : : ; a

k

; x

k+1

; : : : ; x

n

). The binary values

a

i

; : : : ; a

k

are given by the side inputs.

Theorem. If NP has polynomial-size circuits (i.e. NP � P=poly), then MA = AM.

Proof: The assumption implies that SAT has polynomial-size circuits, and by the above

discussion, SAT has polynomial-size witness-constructing circuits. Let A be a set in AM,

i.e. there is a predicate B 2 P such that for all strings x the following holds:

x 2 A ) Pr[ 9y hx; y; zi 2 B ] > 3=4;

x 62 A ) Pr[ 9y hx; y; zi 2 B ] < 1=4:

The set

C = fhx; zi j 9y hx; y; zi 2 Bg

is in NP. Therefore it is reducible to SAT, say with some reduction function f . We can
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Figure 3: A witness-constructing circuit for SAT.

restate the above characterization of A as

x 2 A ) Pr[ f(hx; zi) 2 SAT ] > 3=4;

x 62 A ) Pr[ f(hx; zi) 2 SAT ] < 1=4:

Here z is chosen uniformly at random over strings of length p(n). Finally, this can be

rewritten as follows where OK(F; a) is the polynomial-time predicate that is true if and

only if a is a satisfying assignment for F .

x 2 A ) 9 circuit c : Pr[ OK(f(hx; zi); c(f(hx; zi))) ] > 3=4;

x 62 A ) 8 circuits c : Pr[ OK(f(hx; zi); c(f(hx; zi))) ] < 1=4:

Here the quanti�ers range over circuits of suitable polynomial size. This proves that A

is in MA. 2

This proof is similar in spirit to the one used in [BFNW93] to show that EXPTIME

� P/poly implies EXPTIME �MA, and also similar to the one in [LT93, KST93] used

to prove that if graph isomorphism were in P/poly, then its complement is in MA.

Note added in proof: As O. Watanabe pointed out to us, it can be shown, using

techniques from (Bshouty, Cleve, Kannan, and Tamon: Oracles and queries that are

su�cient for exact learning; COLT'94), that NP � P=poly implies a collapse of PH to

ZPP(NP).
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