Assignment I

- 1. Suppose NSPACE $(f(n)) \subseteq$ DTIME $(f^k(n))$ for some constant k > 0 for all constructible f, can we conclude that NP=co-NP or NP \neq co-NP? Justify.
- 2. Show that
 - If $NP \neq co-NP$, then $P \neq NP$.
 - If any co-NP complete problem is in NP then NP=co-NP.
 - If any problem in NP \cap co-NP is NP-complete then NP=co-NP.
- 3. Suppose we define a language $L \in polyL$ to be polyL-complete if for all $L' \in polyL$, $L' \preceq_m^{\log} L$. Show that there is no complete problem in the class polyL.
- 4. Let L be an NEXP complete problem. Let c be a constant such that $L \in NTime(2^{n^c})$. Show that the language $L' = \{(x, 1^{2^{|x|}}) : x \in L\}$ is in NP. (L' consists of strings in L suffixed by an exponentially large number of 1^s). Suppose $L' \in P$, show that L is in EXP. From this, conclude that if P=NP, then NEXP=EXP. The technique used in this proof is called *padding argument*.
- 5. Show that for any language $L, L \in \text{Dtime}(n^k)$ if and only if the language $L' = \{(x, 1^{|x|^k}) : x \in L\}$ is in Dtime(n). (for each string x in L, we add L padded with $|x|^k$ 1^s to L'). Using this, conclude that $P \neq \text{Dspace}(n)$.
- 6. Show that the problem of determining whether a graph is bipartite is in NL. (You need to use some characterization for bipartite graphs).
- 7. Show that the problem of determining whether a graph is strongly connected (that is does there exists a (directed) path from each vertex to the other) is NL complete. (Reduce from s t REACH).
- 8. If P=NP, show that every language in P except two languages are NP complete. Which are these two languages?
- 9. Recall that we defined $\text{polyL} = \bigcup_i \text{DSPACE}(\log^i n)$. The Steve's class SC (named after Stefan Cook) is defined as $\text{SC} = \{L : L \text{ is accepted by some (off-line) Turing machine } M \text{ that runs in time } O(n^c) \text{ steps using at most } O(\log^k n) \text{ space for some constants } k \text{ and } c\}$. Why is SC not the same as $\text{polyL} \cap P$?
- 10. Given graph (G_1, G_2) , Show that the problem of deciding whether a graph G_1 contains G_2 as an induced subgraph is NP-complete.
- 11. Recall that in the class we characterized NP as NP={L : there exists a polynomial time verifying algorithm A such that $x \in L$ if and only if there exists a polynomially (length) bounded y such that A(x, y) = 1}. Show that co-NP={L : there exists a polynomial time verifying algorithm A such that $x \in L$ if and only if for all polynomially bounded y, A(x, y) = 1}.
- 12. Suppose we define the complexity class extending NP as follows: $\Sigma_2 = \{L : \text{there exists a polynomial time verifying algorithm } A(x, y, z) \text{ on three inputs and constants } k_1 \text{ and } k_2 \text{ such that } x \in L \text{ if and only if there exists } y \text{ such that for all } z \text{ satisfying } |y| \leq |x|^{k_1} \text{ and } |z| \leq |x|^{k_2}, A(x, y, z) = 1\}.$ We define the class $\Pi_2 = \{L : \overline{L} \in \Sigma_2\}$. Derive a characterization as in the above problem for Π_2 . Show that NPU co-NP $\subseteq \Sigma_2$ and NPU co-NP $\subseteq \Pi_2$
- 13. Suppose we try to give the following characterization for NL: We say that a language L is log-space verifiable if there exists an off-line Turing machine M that runs using $O(\log n)$ work tape space having a read only input tape supplied with two inputs the first one being the string x whose membership in L is to be determined and the second, a certificate y whose length is polynomially bounded by the length of x such that (x, y) is accepted by M if and only if $x \in L$. Show that the class of log-space verifiable languages is precisely NP. (It turns out that the ability to read y multiple times is causing the problem. If M is allowed to read each bit of y only once, then we get NL.)