
Assignment II

1. Show that if SAT∈ BPP, then SAT∈ RP. (Use self reducibility).

2. Show that for any language L in NP, there is a polynomially balanced binary relation V such that if
x ∈ L, Prr(V (x, r) = 1) > 1

2
and if x /∈ L, Prr(V (x, r) = 0) > 1

2
.

3. Let X be a non-negative random variable with mean µ. Show that Pr(X > tµ) < 1
t
. This result is

known as the Markov Inequality. Using this, Prove that ZPP=RP ∩ coRP.

4. Let L be accepted by a BPP algorithmA such that Pr(A(x) 6= (x ∈ L)) < 1− 1
nc . Show that for any

1 > ε > 0, we can construct a polynomial time algorithm A′ such that Pr(A′(x) 6= (x ∈ L)) < ε

5. Show that PP⊆ PSPACE.

6. Show thatP PSPACE = P TQBF = NP TQBF = NP PSPACE = PSPACEPSPACE = PSPACE.

Show that EXPEXP 6= EXP. (Hint for the second part: you can solve languages complete for 22O(nk)

time. The trick is that with exponential time, one can write an exponentially long string on the query
tape to the oracle. Now use a padding argument.)

7. A language L is in the class ACi if there is a uniform circuit family (C1, C2, ...) of polynomial size

and O(logi n) depth with unbounded fan-in and fan out that accepts L. Show that NCi ⊆ ACi ⊆
NCi+1.

8. Show that L has a polynomial sized non-uniform circuit family (that is L ∈ P/POLY) if and only if there
exists a polynomial time deterministic algorithm V such that x ∈ L and a function f : N+ −→ Σ∗

such that |f(n)| is polynomially bounded and x ∈ L if and only if V (x, f(|x|)) = 1. (If V is allowed
to be a non-deterministic algorithm, we get the class NP/POLY and if V is allowed to use exponential
time, we get EXP/POLY.)

9. A language L is in the class MA if there exists a polynomially balanced relation V on three inputs
satisfying the following conditions: if x ∈ L, there exists y such that Prz(V (x, y, z) = 1) ≥ 1 − ε
and if x /∈ L, for every y PrZV ((x, y, z) = 1) < ε, where 0 < ε < 1

2

1. Show that given any constant 0 < ε < 1
2
, we can get the error margin down to 1

2n
.

2. Use the idea in Sipser Gacs theorem to achieve perfect completeness. That is, show that there
exists a verifier V ′ such that if x ∈ L, there exists y such that Prz(V (x, y, z) = 1) = 1 and if

x /∈ L, for every y PrZV ((x, y, z) = 1) < ε, where 0 < ε < 1
2

10. A language A Turing reducible to a language B (written A �p
T B) if A ∈ PB . That is, A can be

solved in polynomial time provided an oracle for B is available.

1. If L1, L2 ∈ NP ∪ coNP, then show that L1 ∪ L2 �p
T SAT and L1 ∩ L2 �p

T SAT

2. For any language L, L �p
T L.

11. Show that UDepth(f(n))⊆ DSPACE(fk(n))) for some k > 0 when f(n) ≥ log n is fully space
constructible. Show that DSPACE(f(n)))⊆ UDepth(f c(n))) for some c > 0 when f(n) ≥ log n is
fully space constructible. Note that the proof uses the fact that a uniform circuit family is log-space
computable.

12. (Reading assignment) Let R be a polynomially balanced binary (two input strings) relation. The count-
ing problem associated with R is the following: Given x ∈ Σ∗, find |{y : R(x, y) = 1}|. The class #P
is defined as the class of all counting problems associated with polynomially balanced binary relations.
Let R and S be two relations. A polynomial time algorithm A that maps from Σ∗ to Σ∗ is called a
parsimonious reduction if for each x ∈ Σ∗, |{y : R(x, y) = 1}| = |{z : S(A(x), z) = 1}.
Define the problem #SAT as: given a boolean formula, find the number of satisfying truth assignments.
Show that #SAT indeed can be framed as a #P problem.



1. Let V be any deterministic polynomial time verifier for any language L in NP, show that there is
a parsimonious reduction from V to #SAT. A problem in #P with this property is said to be #P
complete.

2. Show that parsimonious reductions are closed under composition.

3. Show that the problem of counting the number of k cliques in a given graph is #P complete.

4. Show that P PP ⊆ P#P . (Hint: PP requires only testing whether positive certificates form a
majority, which is easier than counting the exact number of certificates)

Page 2


