## Assignment II

1. Show that if $\mathrm{SAT} \in \mathrm{BPP}$, then $\mathrm{SAT} \in \mathrm{RP}$. (Use self reducibility).
2. Show that for any language $L$ in NP, there is a polynomially balanced binary relation $V$ such that if $x \in L, \operatorname{Pr}_{r}(V(x, r)=1)>\frac{1}{2}$ and if $x \notin L, \operatorname{Pr}_{r}(V(x, r)=0)>\frac{1}{2}$.
3. Let $X$ be a non-negative random variable with mean $\mu$. Show that $\operatorname{Pr}(X>t \mu)<\frac{1}{t}$. This result is known as the Markov Inequality. Using this, Prove that $\mathrm{ZPP}=\mathrm{RP} \cap$ coRP.
4. Let $L$ be accepted by a BPP algorithm $A$ such that $\operatorname{Pr}(A(x) \neq(x \in L))<1-\frac{1}{n^{c}}$. Show that for any $1>\epsilon>0$, we can construct a polynomial time algorithm $A^{\prime}$ such that $\operatorname{Pr}\left(A^{\prime}(x) \neq(x \in L)\right)<\epsilon$
5. Show that $\mathrm{PP} \subseteq$ PSPACE.
6. Show that $P^{P S P A C E}=P^{T Q B F}=N P^{T Q B F}=N P^{P S P A C E}=P S P A C E^{P S P A C E}=P S P A C E$. Show that EXP ${ }^{E X P} \neq$ EXP. (Hint for the second part: you can solve languages complete for $2^{2^{O\left(n^{k}\right)}}$ time. The trick is that with exponential time, one can write an exponentially long string on the query tape to the oracle. Now use a padding argument.)
7. A language $L$ is in the class $A C_{i}$ if there is a uniform circuit family $\left(C_{1}, C_{2}, \ldots\right)$ of polynomial size and $O\left(\log ^{i} n\right)$ depth with unbounded fan-in and fan out that accepts $L$. Show that $N C_{i} \subseteq A C_{i} \subseteq$ $N C_{i+1}$.
8. Show that $L$ has a polynomial sized non-uniform circuit family (that is $L \in \mathrm{P} / \mathrm{POLY}$ ) if and only if there exists a polynomial time deterministic algorithm $V$ such that $x \in L$ and a function $f: \mathbf{N}^{+} \longrightarrow \Sigma^{*}$ such that $|f(n)|$ is polynomially bounded and $x \in L$ if and only if $V(x, f(|x|))=1$. (If $V$ is allowed to be a non-deterministic algorithm, we get the class NP/POLY and if $V$ is allowed to use exponential time, we get EXP/POLY.)
9. A language $L$ is in the class MA if there exists a polynomially balanced relation $V$ on three inputs satisfying the following conditions: if $x \in L$, there exists $y$ such that $\operatorname{Pr}_{z}(V(x, y, z)=1) \geq 1-\epsilon$ and if $x \notin L$, for every $y \operatorname{Pr}_{Z} V((x, y, z)=1)<\epsilon$, where $0<\epsilon<\frac{1}{2}$
10. Show that given any constant $0<\epsilon<\frac{1}{2}$, we can get the error margin down to $\frac{1}{2^{n}}$.
11. Use the idea in Sipser Gacs theorem to achieve perfect completeness. That is, show that there exists a verifier $V^{\prime}$ such that if $x \in L$, there exists $y$ such that $\operatorname{Pr}_{z}(V(x, y, z)=1)=1$ and if $x \notin L$, for every $y \operatorname{Pr}_{Z} V((x, y, z)=1)<\epsilon$, where $0<\epsilon<\frac{1}{2}$
12. A language $A$ Turing reducible to a language $B$ (written $A \preceq_{T}^{p} B$ ) if $A \in P^{B}$. That is, $A$ can be solved in polynomial time provided an oracle for $B$ is available.
13. If $L_{1}, L_{2} \in \mathrm{NP} \cup$ coNP, then show that $L_{1} \cup L_{2} \preceq_{T}^{p}$ SAT and $L_{1} \cap L_{2} \preceq_{T}^{p}$ SAT
14. For any language $L, \bar{L} \preceq_{T}^{p} L$.
15. Show that $\operatorname{UDepth}(f(n)) \subseteq \operatorname{DSPACE}\left(f^{k}(n)\right)$ ) for some $k>0$ when $f(n) \geq \log n$ is fully space constructible. Show that $\operatorname{DSPACE}(f(n))) \subseteq \operatorname{UDepth}\left(f^{c}(n)\right)$ ) for some $c>0$ when $f(n) \geq \log n$ is fully space constructible. Note that the proof uses the fact that a uniform circuit family is log-space computable.
16. (Reading assignment) Let $R$ be a polynomially balanced binary (two input strings) relation. The counting problem associated with $R$ is the following: Given $x \in \Sigma^{*}$, find $|\{y: R(x, y)=1\}|$. The class \#P is defined as the class of all counting problems associated with polynomially balanced binary relations. Let $R$ and $S$ be two relations. A polynomial time algorithm $A$ that maps from $\Sigma^{*}$ to $\Sigma^{*}$ is called a parsimonious reduction if for each $x \in \Sigma^{*},|\{y: R(x, y)=1\}|=\mid\{z: S(A(x), z)=1\}$. Define the problem \#SAT as: given a boolean formula, find the number of satisfying truth assignments. Show that \#SAT indeed can be framed as a \#P problem.
17. Let $V$ be any deterministic polynomial time verifier for any language $L$ in NP, show that there is a parsimonious reduction from $V$ to \#SAT. A problem in \#P with this property is said to be \#P complete.
18. Show that parsimonious reductions are closed under composition.
19. Show that the problem of counting the number of $k$ cliques in a given graph is $\# \mathrm{P}$ complete.
20. Show that $P^{P P} \subseteq P^{\# P}$. (Hint: $P P$ requires only testing whether positive certificates form a majority, which is easier than counting the exact number of certificates)
