Assignment II

- 1. Show that if SAT \in BPP, then SAT \in RP. (Use self reducibility).
- 2. Show that for any language L in NP, there is a polynomially balanced binary relation V such that if $x \in L$, $Pr_r(V(x,r)=1) > \frac{1}{2}$ and if $x \notin L$, $Pr_r(V(x,r)=0) > \frac{1}{2}$.
- 3. Let X be a non-negative random variable with mean μ . Show that $Pr(X > t\mu) < \frac{1}{t}$. This result is known as the Markov Inequality. Using this, Prove that $ZPP=RP \cap coRP$.
- 4. Let *L* be accepted by a BPP algorithm *A* such that $Pr(A(x) \neq (x \in L)) < 1 \frac{1}{n^c}$. Show that for any $1 > \epsilon > 0$, we can construct a polynomial time algorithm *A'* such that $Pr(A'(x) \neq (x \in L)) < \epsilon$
- 5. Show that $PP \subseteq PSPACE$.
- 6. Show that $P^{PSPACE} = P^{TQBF} = NP^{TQBF} = NP^{PSPACE} = PSPACE^{PSPACE} = PSPACE = PSPACE$. Show that $EXP^{EXP} \neq EXP$. (Hint for the second part: you can solve languages complete for $2^{2^{O(n^k)}}$ time. The trick is that with exponential time, one can write an exponentially long string on the query tape to the oracle. Now use a padding argument.)
- 7. A language L is in the class AC_i if there is a uniform circuit family $(C_1, C_2, ...)$ of polynomial size and $O(\log^i n)$ depth with unbounded fan-in and fan out that accepts L. Show that $NC_i \subseteq AC_i \subseteq NC_{i+1}$.
- 8. Show that L has a polynomial sized non-uniform circuit family (that is $L \in P/POLY$) if and only if there exists a polynomial time deterministic algorithm V such that $x \in L$ and a function $f : \mathbb{N}^+ \longrightarrow \Sigma^*$ such that |f(n)| is polynomially bounded and $x \in L$ if and only if V(x, f(|x|)) = 1. (If V is allowed to be a non-deterministic algorithm, we get the class NP/POLY and if V is allowed to use exponential time, we get EXP/POLY.)
- 9. A language L is in the class MA if there exists a polynomially balanced relation V on three inputs satisfying the following conditions: if $x \in L$, there exists y such that $Pr_z(V(x, y, z) = 1) \ge 1 \epsilon$ and if $x \notin L$, for every $y \ Pr_Z V((x, y, z) = 1) < \epsilon$, where $0 < \epsilon < \frac{1}{2}$
 - 1. Show that given any constant $0 < \epsilon < \frac{1}{2}$, we can get the error margin down to $\frac{1}{2^n}$.
 - 2. Use the idea in Sipser Gacs theorem to achieve perfect completeness. That is, show that there exists a verifier V' such that if $x \in L$, there exists y such that $Pr_z(V(x, y, z) = 1) = 1$ and if $x \notin L$, for every $y Pr_Z V((x, y, z) = 1) < \epsilon$, where $0 < \epsilon < \frac{1}{2}$
- 10. A language A Turing reducible to a language B (written $A \preceq^p_T B$) if $A \in P^B$. That is, A can be solved in polynomial time provided an oracle for B is available.
 - 1. If $L_1, L_2 \in \text{NP} \cup \text{coNP}$, then show that $L_1 \cup L_2 \preceq^p_T \text{SAT}$ and $L_1 \cap L_2 \preceq^p_T \text{SAT}$
 - 2. For any language $L, \overline{L} \preceq^p_T L$.
- 11. Show that $\text{UDepth}(f(n)) \subseteq \text{DSPACE}(f^k(n))$ for some k > 0 when $f(n) \ge \log n$ is fully space constructible. Show that $\text{DSPACE}(f(n))) \subseteq \text{UDepth}(f^c(n))$ for some c > 0 when $f(n) \ge \log n$ is fully space constructible. Note that the proof uses the fact that a uniform circuit family is log-space computable.
- 12. (Reading assignment) Let R be a polynomially balanced binary (two input strings) relation. The counting problem associated with R is the following: Given $x \in \Sigma^*$, find $|\{y : R(x, y) = 1\}|$. The class #Pis defined as the class of all counting problems associated with polynomially balanced binary relations. Let R and S be two relations. A polynomial time algorithm A that maps from Σ^* to Σ^* is called a **parsimonious** reduction if for each $x \in \Sigma^*$, $|\{y : R(x, y) = 1\}| = |\{z : S(A(x), z) = 1\}$. Define the problem #SAT as: given a boolean formula, find the number of satisfying truth assignments. Show that #SAT indeed can be framed as a #P problem.

- 1. Let V be any deterministic polynomial time verifier for any language L in NP, show that there is a parsimonious reduction from V to #SAT. A problem in #P with this property is said to be #P complete.
- 2. Show that parsimonious reductions are closed under composition.
- 3. Show that the problem of counting the number of k cliques in a given graph is #P complete.
- 4. Show that $P^{PP} \subseteq P^{\#P}$. (Hint: PP requires only testing whether positive certificates form a majority, which is easier than counting the exact number of certificates)