Assignment III

1. A language L is in the class S_{2}^{p} if the following holds: there exists a polynomially balanced relation V such that If $x \in L$, then there exists y such that for all $z, V(x, y, z)=0$ whereas, if $x \notin L$, there exists an z such that for all $y, V(x, y, z)=0$. Intuitively, this means that if $x \in L$, a prover can send V a proof y such that all test runs z of V are accepting whereas, if $x \notin L$, then V has a special test run z (which depends on x only and not on the proof supplied by the prover) which will reject any y supplied by the prover.
2. Show that S_{2}^{p} is closed under union, intersection and complementation.
3. Show that $\mathrm{NP} \subseteq S_{2}^{p} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$.
4. Use the technique in Sipser Gacs theorem to show that MA $\subseteq S_{2}^{p}$.
5. If $\mathrm{NP} \subseteq \mathrm{P} / \mathrm{POLY}$ show that $\mathrm{PH}=S_{2}^{p}$. (See Wiki - Karp Lipton Theorem for hint).
(Note: It can be shown that $\mathrm{BPP} \subseteq S_{2}^{p}$. The proof is more involved).
6. Prove the following inclusions. (Some of them follow from the previous problem).
7. $\mathrm{BPP} \subseteq \mathrm{MA}$
8. $\mathrm{NP} \subseteq$ MA.
9. $\mathrm{MA} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$.
10. $\mathrm{AM} \subseteq \Pi_{2}^{p}$.
11. Prove that If PSPACE \subseteq P/POLY then PSPACE=MA. (Hint: Any problem in PSPACE will have polynomial sized circuit which Merlin can sent to Arthur).
12. Recall that $A M_{\epsilon}$ and $M A_{\epsilon}$ were defined as the version of $A M$ and $M A$ with imperfect completeness. That is, if $x \in L$, the $A M / M A$ protocol accepts only with probability $1-\epsilon$ where as if $x \notin L$, the protocol rejects with probability at least ϵ.
13. Show that the value of ϵ can be brought down to $\frac{1}{2^{n}}$.
14. Show that $\mathrm{MA}_{\epsilon}=\mathrm{MA}$ and $\mathrm{AM}_{\epsilon}=\mathrm{AM}$.
15. Show that MA \subseteq AM.
16. Show that $\mathrm{AM}[\mathrm{k}] \subseteq \mathrm{AM}[2]$, where k denotes the number of message exchanges between the two parties.
17. If $S_{1}, S_{2}, . ., S_{m}$ be a collection of subsets of $\{1,2, . ., n\}$. Suppose we assign each number between 1 and n a weight uniformly at random between 1 and t, where $t>n$, then show that with probability at least $1-\frac{n}{t}$, there is a subset S_{i} of unique minimum weight. This is a general form of the isolation lemma proved in class. (The proof is identical).
18. Let p be a large prime. Let Z_{p} denote the field $\{0,1,2, . ., p-1\}$ with addition and multiplication modulo p. Consider the $\operatorname{map} h_{a, b}(x)=a x+b \bmod p, a, b \in\{0,1,2, . ., p-1\}$ mapping elements in Z_{p} to Z_{p}. Clearly, for each $a, b \in Z_{p}$, we can define such a function and there are p^{2} such functions. Let us collect all of them to the set $\mathcal{H}=\left\{h_{a, b}, 0 \leq a, b \leq p-1\right\}$.
19. Fix arbitrary $a, b \in Z_{p}$. Show that given any $c, d \in Z_{p}$, there exists unique x, y such that $h_{a, b}(x)=c$ and $h_{a, b}(y)=d$.
20. Given any $x \neq y$, and any arbitrary $c, d \in Z_{p}$, suppose we choose a, b at random. show that $\operatorname{Pr}\left(h_{a, b}(x)=c \wedge h_{a, b}(y)=d\right)=\operatorname{Pr}((a=r) \wedge(b=s))=\frac{1}{p^{2}}$, where $r=\frac{c-d}{x-y}$ and $s=\frac{x d-y c}{x-y}$. Hence conclude that \mathcal{H} is a pair-wise independent hash family.
