Assignment III

- 1. A language L is in the class S_2^p if the following holds: there exists a polynomially balanced relation V such that If $x \in L$, then there exists y such that for all z, V(x, y, z) = 0 whereas, if $x \notin L$, there exists an z such that for all y, V(x, y, z) = 0. Intuitively, this means that if $x \in L$, a prover can send V a proof y such that all test runs z of V are accepting whereas, if $x \notin L$, then V has a special test run z (which depends on x only and not on the proof supplied by the prover) which will reject any y supplied by the prover.
 - 1. Show that S_2^p is closed under union, intersection and complementation.
 - 2. Show that NP $\subseteq S_2^p \subseteq \Sigma_2^p \cap \Pi_2^p$.
 - 3. Use the technique in Sipser Gacs theorem to show that MA $\subseteq S_2^p$.
 - 4. If NP \subseteq P/POLY show that PH = S_2^p . (See Wiki Karp Lipton Theorem for hint).

(Note: It can be shown that BPP $\subseteq S_2^p$. The proof is more involved).

- 2. Prove the following inclusions. (Some of them follow from the previous problem).
 - 1. BPP⊆ MA
 - 2. NP \subseteq MA.
 - 3. MA $\subseteq \Sigma_2^p \cap \Pi_2^p$.
 - 4. AM $\subseteq \Pi_2^p$.
- 3. Prove that If PSPACE⊆P/POLY then PSPACE=MA. (Hint: Any problem in PSPACE will have polynomial sized circuit which Merlin can sent to Arthur).
- 4. Recall that AM_{ϵ} and MA_{ϵ} were defined as the version of AM and MA with imperfect completeness. That is, if $x \in L$, the AM/MA protocol accepts only with probability $1 - \epsilon$ where as if $x \notin L$, the protocol rejects with probability at least ϵ .
 - 1. Show that the value of ϵ can be brought down to $\frac{1}{2^n}$.
 - 2. Show that $MA_{\epsilon}=MA$ and $AM_{\epsilon}=AM$.
 - 3. Show that $MA \subseteq AM$.
 - 4. Show that $AM[k] \subseteq AM[2]$, where k denotes the number of message exchanges between the two parties.
- 5. If $S_1, S_2, ..., S_m$ be a collection of subsets of $\{1, 2, ..., n\}$. Suppose we assign each number between 1 and n a weight uniformly at random between 1 and t, where t > n, then show that with probability at least $1 \frac{n}{t}$, there is a subset S_i of unique minimum weight. This is a general form of the isolation lemma proved in class. (The proof is identical).
- 6. Let p be a large prime. Let Z_p denote the field $\{0, 1, 2, ..., p-1\}$ with addition and multiplication modulo p. Consider the map $h_{a,b}(x) = ax + b \mod p, a, b \in \{0, 1, 2, ..., p-1\}$ mapping elements in Z_p to Z_p . Clearly, for each $a, b \in Z_p$, we can define such a function and there are p^2 such functions. Let us collect all of them to the set $\mathcal{H} = \{h_{a,b}, 0 \le a, b \le p-1\}$.
 - 1. Fix arbitrary $a, b \in Z_p$. Show that given any $c, d \in Z_p$, there exists unique x, y such that $h_{a,b}(x) = c$ and $h_{a,b}(y) = d$.
 - 2. Given any $x \neq y$, and any arbitrary $c, d \in Z_p$, suppose we choose a, b at random. show that $Pr(h_{a,b}(x) = c \wedge h_{a,b}(y) = d) = Pr((a = r) \wedge (b = s)) = \frac{1}{p^2}$, where $r = \frac{c-d}{x-y}$ and $s = \frac{xd-yc}{x-y}$. Hence conclude that \mathcal{H} is a pair-wise independent hash family.